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Abstract

This paper uses a risk-shifting model to analyze policy responses to asset price booms. We show

risk shifting leads to inefficient asset and credit booms in which asset prices can exceed fundamentals.

However, the inefficiencies associated with risk-shifting arise independently of whether the asset is a

bubble. Given evidence of risk-shifting, then, policymakers may not need to determine if assets are

bubbles to justify intervention. We then show that some of the main candidate interventions against asset

booms have ambiguous welfare implications: Tighter monetary policy can exacerbate some inefficiencies

but mitigates others, while leverage restrictions can raise asset prices and lead to more excessive leverage.

Policy responses are more effective when they disproportionately discourage riskier investments.
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Introduction

Policymakers have long debated how to respond to asset booms and potential bubbles, i.e. situations where

asset prices surge to levels that seemingly exceed the value of dividends these assets are expected to yield.

One view, summarized in Bernanke and Gertler (1999) and Gilchrist and Leahy (2002), argues policymakers

should wait to see what happens to asset prices and act only if asset prices collapse and drag down economic

activity. An alternative view, summarized in Borio and Lowe (2002) and reinforced in subsequent work by

Jorda, Schularick, and Taylor (2015) and Mian, Sufi, and Verner (2017), argues asset booms are likely to

end in financial crises and recessions, especially when they coincide with credit booms. By intervening to

dampen asset prices during booms, they reason, policymakers might mitigate the eventual crash.

The severity of the Global Financial Crisis in 2007 and the difficulty central banks faced in providing

stimulus in its wake led many policymakers to lean toward a more proactive response to asset booms. This

shifted the debate from whether to intervene to how to intervene. The leading proposals for intervention

include monetary tightening and macroprudential regulation. Both approaches have at times been criticized.

For example, Svensson (2017) argues the costs of monetary tightening during asset booms exceed its benefits.

In the opposite direction, Stein (2013) argues that even if regulatory policy could work in principle, in

practice it is likely to be circumvented through clever financial engineering.

This paper tackles the question of how policy should respond to asset booms through the lens of a risk-

shifting model, meaning that the lenders who ultimately finance asset purchases cannot gauge the default

risk they face from any individual borrower. We focus on risk-shifting because asset booms often feature

extensive lending against assets that are hard for lenders to evaluate, either because they are tied to new and

imperfectly understood technologies (dot-com, blockchain, tranched securities) or because they are valued

idiosyncratically, like housing, making it hard to distinguish committed home buyers from speculators who

will walk away if house prices fall.1 To be sure, there is a vast literature on asset booms and bubbles

that abstracts from risk shifting, so our mechanism is not essential for booms or bubbles. However, as we

elaborate in the Conclusion, risk-shifting can naturally emerge in those models as well. Our analysis should

thus be viewed as complementary to alternative models of bubbles rather than a substitute.

Our focus on risk-shifting mirrors recent work by Aikman, Haldane, and Nelson (2015) and Martinez-

Meira and Repullo (2017) that uses risk-shifting to analyze credit booms and banking crises. In these

papers, banks attract deposits and then invest them in investments of varying risk. These papers show how

shocks to productivity or desired savings can lead banks to fund riskier investments that are more likely to

end in default. Since these models do not feature assets, it is hard to relate them to asset booms or bubbles.

They also abstract from how attributes of the underlying assets might matter for the boom.

1While we describe situations where limted information is an exogenous feature of an asset, Asriyan, Laeven, and Martin

(2018) argue asset booms can reduce the incentive to screen borrowers, so information about assets deteriorates endogenously.
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Our model builds on existing work on risk-shifting and asset pricing. Allen and Gorton (1993) were

the first to show that risk-shifting allows asset prices to exceed fundamentals, an idea further developed in

Allen and Gale (2000), Barlevy (2014), Dow and Han (2015), Dubecq, Mojon, and Ragot (2015), and Bengui

and Phan (2018). We contribute to this literature in two ways. First, we use a general equilibrium setup

that can incorporate policy interventions absent in previous work. Second, we introduce costly default,

allowing us to capture a fall in output when an asset boom ends. Hoggarth, Reis, and Saporta (2002) and

Reinhart and Rogoff (2009) estimate that asset price crashes are associated with a fall in GDP per capita

of 9-16%; Atkinson, Luttrell, and Rosenblum (2013) estimate even larger cumulative losses for the US in

the recent crisis. Economists have identified various reasons for why output falls when asset prices collapse.

For example, financial intermediaries who lent against assets may not be able to finance new investments

when they face an overhang of debt against those assets. Alternatively, indebted households may delever

when the assets they borrowed to buy fall in price, and with nominal price rigidity such deleveraging

can reduce aggregate demand and output.2 Default costs similarly leave agents poorer when asset prices

collapse, although this is because lenders must use resources to recover their obligations. Allowing for such

a contraction, even in this stylized way, has important implications for policy.

At the heart of our model is an information asymmetry in which borrowers know the risks of their

investments better than lenders. This encourages agents to borrow and gamble on risky assets, knowing it

will be lenders who bear the losses and default costs if the gamble fails. As speculators buy up assets, they

drive up asset prices and drive down the expected return on assets. This leads to two distinct inefficiencies.

The first is misallocation. Borrowers direct too many resources to risky investments that offer high private

returns but low overall returns. This is consistent with evidence of misallocation during credit booms in

Borio, Kharroubi, Upper, and Zampolli (2015) and Charles, Hurst, and Notowidigdo (2018). The second

inefficiency involves excessive leverage as agents ignore the default costs they impose on others and borrow

more than is socially optimal. Both of these distortions arise because agents who borrow to buy risky assets

fail to account for the externalities they impose on their lenders in the form of losses and default costs.

Our model gives rise to equilibria that are broadly consistent with historical asset booms: Asset prices

appear excessive and can grow exponentially, the asset boom is accompanied by a credit boom, borrowing

to buy risky assets is relatively cheap, and realized returns on assets are high. The boom can feature a

bubble where asset prices exceed fundamentals. But, unlike in previous work, we find that the boom is

inefficient even without giving rise to a bubble. The role for policy in our model is not to push prices toward

fundamentals, but to correct distortions that arise in lending markets where those who borrow to speculate

are subsidized by safer borrowers. In contrast to Bernanke and Gertler (2001) who argue policymakers

should not intervene when they are unsure if they face a bubble or not, our model provides justification

for the Borio and Lowe (2002) position that policymakers should intervene even without knowing if asset

2See Phillipon (2010) on debt overhang and Korinek and Simsek (2016) and Farhi and Werning (2016) on aggregate demand

externalities and deleveraging. Rognlie, Shleifer, and Simsek (2018) suggest another channel involving investment overhang,

whereby a glut of assets during the boom such as housing dampens the production of new assets after the crash. The latter is

tricky to capture in our setup, since we assume assets are either endowed or created at date 0 but not thereafter.
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booms represent bubbles, with the added caveat that they have evidence of underlying risk-shifting.

While our model suggests a role for intervention, the main remedies against booms policymakers have

considered turn out to be ambiguous for welfare. This is because agents in our model can undertake two

types of investments, speculation and a safe activity, and policy interventions affect both investments rather

than just discourage speculation. For example, we find tighter monetary policy alleviates excessive leverage

but suppresses productive investment and exacerbates misallocation. We show this can be mitigated if

rather than tightening immediately, policymakers promise to tighten only if the boom continues (and, by

implication, ease if it ends). We also find that macroprudential regulation can be counterproductive if

restricting leverage particularly discourages less risky investments, leaving more resources for speculation.

But unlike with monetary tightening, promising to restrict future leverage only makes things worse. Our

takeaway is that policies for fighting booms must be carefully designed to ensure they disproportionately

deter speculation. Successful intervention can involve monetary tightening or leverage restrictions, although

the two are not equivalent: Tighter money raises interest rates, while leverage restrictions reduce demand

for credit and lower interest rates. This offers a contrast to recent work by Caballero and Simsek (2019)

that emphasizes aspects monetary tightening and leverage restrictions have in common.

The paper is organized as follows. Section 1 introduces the basic setup, focusing on a simple case where

assets are riskless. We build on this framework in Section 2 to study risky assets, and show these give

rise to asset booms and, in some cases, bubbles. Section 3 explores how the equilibrium of our model is

inefficient and admits a role for policy intervention. Section 4 considers monetary policy and Section 5

considers macroprudential regulation, specifically restrictions on leverage. Section 6 concludes.

1 Credit, Production, and Assets

Our analysis requires a framework with credit, production, and assets. We begin with the simple case where

the asset is riskless. In the next section we build on this setup and allow for risky assets. It is in the latter

case where credit and asset booms emerge.

Consider an overlapping generations economy where agents live for two periods and only value consump-

tion when old. That is, agents born at date  value consumption  and +1 at dates  and + 1 at

 ( +1) = +1 (1)

There is a fixed supply of identical assets normalized to one. For now, we assume these already exist

at date 0, although later on we will consider the case where they must be produced. Each asset yields a

constant real dividend   0 per period. In the next section we will allow the dividend to be stochastic.

There is a cohort of old agents at date 0 who start out owning all the assets. At each  = 0 1 2  a new

cohort of agents is born. A cohort consists of two types. The first, whom we call savers, are endowed with
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an aggregate  units of the good when young. They cannot produce or store goods, and must either buy

assets or trade intertemporally to convert their endowment into consumption when old. The second type,

whom we call entrepreneurs, can convert a good at date  into 1 +  goods at date + 1 where   0, but

only up to a finite capacity of one unit of input. Each entrepreneur is endowed with   1 goods while

young. Since this is below their productive capacity, there is scope for savers and entrepreneurs to trade.

In principle,  and  can vary across entrepreneurs. For most of the analysis, we assume  = 0 for

all entrepreneurs, so they must borrow all of their inputs. As will become clear in Section 5 when we

allow for   0, allowing entrepreneurs to have wealth greatly complicates the analysis even though the

qualitative results are unchanged. We do assume  varies across entrepreneurs. Let  () denote the density

of entrepreneurs with productivity . We assume  ()  0 for all 0 ≤  ∞ and

 

Z ∞
0

 ()  ∞ (2)

Condition (2) implies entrepreneurs collectively require more inputs than savers are endowed with.

Each period, then, savers must allocate their endowment  between buying assets and funding production

by entrepreneurs to determine what they can consume when old. However, we assume trade between savers

and entrepreneurs is subject to several frictions. At this point, when dividends are deterministic, these

frictions are largely irrelevant. But once we allow for stochastic dividends in Section 2, they will matter.

1. Transaction Costs: Agents incur a fixed utility cost  to trade with savers, where we let → 0.

2. Information Frictions: Savers cannot monitor if the agents they fund buy assets or produce. They

also cannot observe any of the agent’s wealth beyond the particular project the lender finances.

3. Contracting Frictions: Trade is restricted to non-contingent debt contracts, i.e., for each unit of

funding agents receive at date  they must pay a fixed amount 1 + at date + 1.

4. Default Costs: If borrowers fail to pay their obligation, lenders can collect any proceeds from the

project borrowers invested in, but the seizure wastes Φ resources per unit invested in the project.

The transactions cost  ensures agents will not borrow for ventures that will lead them to default with

certainty. We take the limit as  → 0 to avoid keeping track of this cost. These costs eliminate equilibria

in which agents borrow for strictly unprofitable purposes out of sheer indifference.

The information frictions we assume imply that although savers want to finance entrepreneurial produc-

tion, they cannot prevent their borrowers from buying assets instead. With deterministic dividends, this

will not be an issue, since buying assets will be unprofitable given transaction costs. But when we allow

for stochastic dividends in the next section, some borrowers might buy assets instead of producing. While

in our model lenders cannot tell whether their borrowers are producing or buying assets, we view this as a

metaphor for situations in which all borrowing is used to buy assets, but lenders cannot tell the risk they face
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from any given borrower or asset. For example, with new technologies, lenders cannot distinguish workable

applications of new assets from speculative ventures. As another example, mortgage lenders cannot distin-

guish illiquid agents who value homeownership and earn a surplus from borrowing, much as entrepreneurs

in our model earn 1 + , and speculators who earn rents and capital gains from buying houses but would

default if prices fell.3 Assuming wealth is unobservable implies borrowers face limited liability, since lenders

can only go after the resources they know about. Essentially, agents can borrow using non-recourse loans,

or, alternatively, via shell entities that limit their liability to the returns on the project they borrow for.

The contracting frictions we assume are motivated by the empirical prevalence of non-contingent debt.

However, this restriction on contracts plays an important role in preventing savers from screening borrowers

who intend to speculate. When we allow for stochastic dividends in the next section, savers could discourage

speculation by stipulating a higher repayment when the return on the asset is high and a lower one when

the return is low. Imposing noncontingent debt rules out such arrangements. While we do not model the

friction on contracting, we implicitly view it as a high cost to a third party of verifying contingencies.

Finally, our assumption that default costs are proportional to the scale of the project and not to the

amount agents borrow captures the idea that auditing a borrower requires inspecting their projects. Again,

although we model these as recovery costs, we view them as a stand-in for various costs and mechanisms

that lead to diminished output when asset prices collapse.

An equilibrium consists of paths for asset prices {}∞=0 and interest rates on loans {}∞=0 that ensure
both asset and credit markets clear when agents act optimally. To facilitate our exposition, suppose equi-

librium prices  and interest rates  are deterministic. We confirm this is true in Appendix A. To solve

for an equilibrium, we need supply and demand for assets and for credit. These can be easily characterized.

Agents in their last period of life neither supply nor demand credit. They do own all assets, though, and

will sell them if the asset price   0. Young savers are the only agents who can lend. They compare

the return to lending 1 + with the return to the asset 1 +  ≡ ++1


and invest in whatever offers the

highest return. Finally, young entrepreneurs choose whether to borrow to produce, and all young agents

must choose whether to borrow to buy assets. Agents will borrow for any activity they expect to profit

from. This means entrepreneurs will find it profitable to borrow to produce if and only if their productivity

 ≥  +  . In the limit as → 0, entrepreneurs will produce iff their productivity  ≥ .

Savers use their endowment to either buy assets or make loans. Their borrowers will then either produce

or buy assets. Hence, the endowment is ultimately used either to finance production or buy assets, implyingZ ∞


 ()  +  =  (3)

Since we assume  ()  0 for all  ≥ 0, there is a unique interest rate  =  () that satisfies (3) for any

3Of course, the surplus agents who value homeownership obtain are not constant and depend on the current price of housing.

For an example of a proper risk-shifting model of housing, see Barlevy and Fisher (2018).
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asset price , where  () is increasing in . Intuitively, a higher  reduces the amount of goods available

for productive investment, so the interest rate on loans  must rise to lower demand from entrepreneurs.

Next, we argue the equilibrium interest rate on loans 1 + must equal the return on the asset 1 +  ≡
++1


. Suppose   . Agents could earn positive profits by borrowing to buy assets, since even with a

fixed cost   0 borrowing would be profitable at a large enough scale. Demand for borrowing would then

be infinite, yet the supply of credit is at most , so this cannot be an equilibrium. Suppose instead that

  . Savers would then earn more from lending than from buying the asset, so they would refuse to

buy assets. Nor would any agent borrow to buy the asset, knowing she would default. Since the old sell the

asset whenever its price is positive, this would require  ≤ 0. But if the price were nonpositive, demand
for the asset would be infinite. For both the credit and asset market to clear, then, we must have

1 + =
+ +1


= 1 +  (4)

Note that (4) holds for any value of . When   0, no agent would borrow to buy assets that offer the

same return as the interest rates on loans given the transaction costs involved. Taking the limit as  → 0

implies agents will not borrow to buy assets in equilibrium. Substituting (3) into (4) implies

+1 = (1 +  ())  − 

≡  () (5)

where 0 ()  1,  (0) = −  0, and lim→∞  ()  . The graph of  () is illustrated in Figure 1

together with the 45o line. The two lines intersect at the unique value  at which  = 
¡

¢
. For any

initial condition, the law of motion +1 =  () defines a unique path of asset prices. For any initial

condition other than 0 = , the path will reach in finite time a value that is either negative or exceeds

, neither of which can be an equilibrium. Hence, the unique deterministic equilibrium is  =  and

 = 
¡

¢ ≡  for all . Substituting  = +1 =  in the zero-profit condition (4), implies

 = 
¡

¢


The right hand side is increasing in . It follows that the equilibrium price  is increasing in . Graphically,

a larger  will shift the curve +1 =  () in Figure 1 down, and so the steady state 
 will rise.

In Appendix A, we confirm  =  is the unique equilibrium for this economy, implying the following:

Proposition 1 When  =  for all , in the limit as  → 0, the unique equilibrium features a constant

price  =  and constant interest rate  = () = . Only entrepreneurs with productivity   

produce, agents borrow only to produce and not to buy assets, and only savers hold assets,

In equilibrium, the return on assets and loans are equal. Denote the common return to both activities

by  = 
¡

¢
. Consider the present value of dividends discounted at this return. This is given by

 ≡
∞X
=1

³
1

1+

´
 =  = 
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The value of dividends discounted at the return agents earn on their savings coincides with the price of the

asset. When  =  for all , the asset will not be associated with a bubble. In short, when the asset is

riskless, agents only borrow to produce and assets are properly priced. This will offer a contrast to what

happens in the next section when we assume dividends are stochastic.

Remark 1: We can easily allow for multiple riskless assets. Suppose there were  assets indexed

 = 1   , each with fixed supply of 1 but potentially different fixed dividends  . Let  denote the price

of the -th asset at date . Define  ≡P
=1  as the total dividends from all  assets and  ≡

P
=1 

as the value of all  assets. Resources that don’t finance production will be used to buy assets, so (3)

continues to hold. In addition, the return on each asset 1 +  ≡ ++1


must equal the interest rate on

loans 1 + . Combining these equalities implies (4). Hence, the equilibrium conditions for  and  are

unchanged, but  now represents the total value of all assets, each of which offers the same return . ¥

Remark 2: With some modifications, we can also allow for a growing set of assets. This will be relevant

in the next section, where we will argue that the periodic arrival of new types of assets can trigger asset

booms. Suppose each period’s old are endowed with a stock of new assets normalized to 1. Assets pay

dividends one period after arrival. For aggregate dividends to remain constant, dividends on any single

asset must decay over time. Let  denote the dividend at date  on assets that arrived at date , and set

 =

(
(1− )

−1
 if  = 0

(1− )
−(+1)

 if  = 1 2 3 
for  ≥ + 1

By design, total dividends
P−1

=0  in each period  sum to . Let  denote the date- price of the asset

that arrived at date , and set  =
P

=0  as the total value of all assets around at date . The market

clearing condition (3) is unchanged. The return on each asset 1 +  ≡ +1++1


will equal the interest

rate on loans 1 +. Aggregating over all assets available at date  yields the following alternative to (4):

1 + =
+ (+1 − +1+1)



The equilibrium value of all assets  will be constant and equal to


+
, where  denotes the equilibrium

interest rate on loans. The price of any individual asset equals  =
+1


 =
+1
+

. ¥

We conclude our discussion with a brief comment on welfare. In equilibrium, the amount savers spend on

assets equates the return on the asset to the productivity of the marginal entrepreneur. Is this efficient? At

first, it might seem that any resources spent on the asset are wasted, since the asset will yield  regardless of

how much is spent on it while lending to entrepreneurs yields additional output. However, once we recognize

that the asset must be held by someone between periods to ensure it survives from one period to the next,

compensating the agents who hold the asset should be treated as an investment in safeguarding a stream

of dividends for future cohorts. Efficiency dictates that the returns to all investments should be equal at

the margin, and so equating the return to production and the return on the asset is in fact consistent with

efficiency. In the next section, we show that returns will not be equated this way when assets are risky.
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2 Risky Assets, Credit Booms, and Bubbles

We now turn to the case where dividends are stochastic. For this, we return to assuming there is only one

type of asset. Let the dividend on this asset follow a regime-switching process such that the dividend 

starts at    when  = 0 and then switches to  with a constant probability  ∈ (0 1) in each period if
it has yet to switch. Once the dividend falls to , it will remain equal to  forever.

An equilibrium still consists of paths for asset prices {}∞=0 and loan rates {}∞=0. But since agents
might now borrow both to buy assets and produce, we also need to track the share of lending used to buy

assets, {}∞=0  These paths must still ensure asset and credit markets clear at all dates  and for any .

In what follows, it will be convenient to distinguish for each date  whether  equals  or . If  = ,

agents who buy the asset at date  will be unsure about the dividend +1 they will receive at  + 1. If

 = , agents know the asset will pay a dividend of  at date +1. Let
¡
  


  




¢
denote an equilibrium

if  =  and
¡
  


  




¢
denote an equilibrium if  = . Once dividends fall, the equilibrium will be as

in Section 1, with  = , 
 = , and  = 0 for all . We only need to solve for

©
(  


  


 )
ª∞
=0
.

We first show that we can solve for the equilibrium price  and interest rate on loans 

 independently

of  . As before, savers allocate all of their endowment  either to finance production or to buy assets.

The price  must thus continue to satisfy (3). Next, we argue that in equilibrium,¡
1 +



¢
 = +1 + (6)

That is, the interest rate on loans 1 + 
 is equal to the return on the asset if +1 = . We first argue

that +1 + represents the maximum possible payoff to the asset, i.e., that

+1 +   + 

For suppose +1 + ≤  + . Since   , this requires +1  . From (3), we know the equilibrium

interest rate on loans +1 must equal  (+1). If 

+1  , then since 0 (·)  0, we have


+1 = 

¡
+1

¢
 

¡

¢
= 

But then we would have ¡
1 +

+1

¢
+1 

¡
1 +

¢
 =  + 

This means that if +1 = , an agent who borrows to buy assets at date  + 1 can make positive profits

if +2 = . But then there would be infinite demand for borrowing to buy assets, which cannot be an

equilibrium given supply of credit is finite. It follows that +1 +   + .

To confirm (6), i.e., that the interest rate on loans is equal to the maximum return on the asset, suppose¡
1 +



¢
  +1+. This would imply infinite demand for borrowing: Agents can earn positive profits

if +1 =  but default and earn zero if +1 = . But the supply of credit is finite. Next, suppose
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¡
1 +



¢
  +1+. In this case, no agent would borrow to buy the asset knowing they would default

and incur the cost . Since no agent borrows to buy assets, the only agents who borrow are entrepreneurs

with productivity   
 , and they will repay for sure. The return to lending is 


 , which exceeds the

expected return on the asset. No agent would buy the asset, so  would have to be nonpositive to ensure

the old don’t want to sell the asset. But this cannot be an equilibrium price, since if  ≤ 0 there would
be infinite demand for the asset. For both markets to clear, we need

¡
1 +



¢
 = +1 +.

Condition (6) is identical to the condition for an asset that offers a constant dividend  =  for all .

From the previous section, we know there is a unique path
©
  




ª∞
=0

that satisfies both this condition

and (3). The equilibrium price  is thus constant and equal to , where  solves


¡

¢
 = 

and the interest rate on loans 
 is given by 

¡

¢ ≡ . This result is striking: The asset trades as if

+1 =  with certainty, even though +1 equals  with a probability  that can be arbitrarily close to 1.

The reason the asset is overpriced can be understood as follows. Lenders cannot monitor borrowers to

insure they produce or use contingent contracts to screen out speculators, which allows agents to blend in

with entrepreneurs and borrow to buy risky assets. Since borrowers can default and shift losses to creditors

if the asset return is low, they only care about the maximal return on the asset. They will drive the price of

the asset to the price consistent with the maximal dividend , even if this realization is unlikely. We will

turn to the question of whether this means the price exceeds the asset’s fundamental value further below.

The only part of the equilibrium we still need to solve for is
©

ª∞
=0
. For this, we use the expected

return to the asset, denoted  , and the expected return to lending, denoted 


 . The former is given by

1 +  = (1− )
³
1 + 



´
+ 

³
+



´
≡ 1 +  (7)

As for the expected return to lending, a fraction  of lending is used to buy assets and the rest finances

production. Since all of the proceeds from asset purchases accrue to the lender, the expected return to these

loans is just the expected return to buying an asset net of default costs, 1+  − Φ. The remaining loans

that finance production will be repaid in full, so the return on those loans is 1 +. This implies

1 + ̄
 =

¡
1− 

¢ ¡
1 +

¢
+ 

¡
1 +  − Φ

¢
=

¡
1− 

¢ ³
1 + 



´
+ 

¡
1 +  − Φ

¢
(8)

If 


  , savers would prefer lending over buying assets. The only agents who would buy assets would

be those who borrow to do so, and so  =



. If 



 = , savers would be indifferent between buying

assets and lending. This means  can assume any value between 0 and 


. Finally, if 



  , savers

would prefer buying assets over lending. No agent would borrow to buy assets, implying  = 0. Hence,

the expected return to lending 


 and the share of lending used to buy assets  are jointly determined.

9



To solve for 


 and  , consider first the case where  = 


. This can only be an equilibrium if




 ≥  when  =



, i.e., only if³

1− 



´


+ 



¡
 − Φ

¢ ≥ 

Rearranging this equation and substituting in for  implies  =



is an equilibrium only if

Φ ≤
³



− 1
´³

+−−


´
≡ Φ∗ (9)

Next, consider the case where  ∈
³
0 





´
. This can only be an equilibrium if 



 =  when we evaluate




 at the relevant  . Since 


 is decreasing in  , this requires that 


   when  =



, or

Φ  Φ∗ (10)

In this case, the equilibrium value of  is the one that equates 


 and , which implies

 =
+−−

+−−+Φ (11)

Finally, there cannot be an equilibrium in which  = 0. This would require 


 ≤  when  = 0. But

 = 0 implies 


 =



 . Hence, the value of  is unique and is either equal to 


or some value

between 0 and 


, depending on the cost of default Φ. We can summarize this result as follows:

Proposition 2 When the dividend process follows a regime-switching process, in the limit as  → 0, the

unique equilibrium is given by

( ) =

( ¡
 

¢
if  = ¡

 
¢

if  = 

The share of lending used to buy assets  when  =  equals 0 and when  =  is given by

 =  =

(



if Φ ≤ Φ∗

+−−
+−−+Φ if Φ  Φ∗

Since   0, it follows that some agents must borrow to buy assets when  = . If all borrowing

was for production, lending would entail no default risk. But given the equilibrium interest rate on loans

 equals the maximum return on the asset, this would mean lending is more profitable than buying the

asset. No agent would buy the asset, even as the old try to sell their assets, which cannot be an equilibrium.

So borrowers have to buy up some assets. Which agents borrow to speculate is indeterminate. It could

be entrepreneurs with    who otherwise consume nothing, but our assumptions imply savers and

productive entrepreneurs could also speculate without risking their net worth. In contrast to the case of

 =  in Section 1, lending now finances both production and speculation, and the asset seems overpriced.

Remark 3: In our model, there are no safe assets when  = . Allowing for safe assets offering a return

 no higher than the expected return on lending 

would not undermine our results. But if we allowed
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for safe assets offering a return  above the value of 

in Proposition 2, savers would shift from lending

to buying safe assets, depressing the price of the risky asset  and increasing the expected return on loans



. This mirrors what we find in Section 4 when we allow agents to make deposits with a central bank: If

the central bank offered to pay a higher rate on (safe) deposits, lending and the asset price  decline. The

fact that a boom hinges on the absence of safe assets or a low return on such assets is reminiscent of work

by Aoki, Nakajima, and Nikolov (2014), Caballero and Farhi (2017), and Acharya and Dogra (2018) on how

an absence or shortage of safe assets can lead to bubbles. But the mechanism is different. In those papers,

bubbles arise when the interest rate falls below the economy’s growth rate. Here, a low  encourages savers

to “search for yield” and tolerate risky lending, similarly to Martinez-Meira and Repullo (2017). ¥

We now argue our model captures key features of the booms in Borio and Lowe (2002), Jorda, Schularick,

and Taylor (2015), and Mian, Sufi, and Verner (2017). That is, we show the equilibrium involves asset and

credit booms, can involve bubbles, features high realized returns to savings even as borrowing is relatively

cheap, and that the asset boom it features ends with a crash in asset prices and costly defaults.

Asset Price Booms: We begin with asset prices. The equilibrium price of the asset while  =  will

be the same as in an economy in which dividends remain equal to  forever. As we noted earlier, the price

of an asset with a fixed dividend is increasing in the value of the dividend, so   . Our economy starts

with a high asset price that collapses when dividends fall.

This equilibrium arguably fails to capture empirical asset booms. The latter feature rapid asset price

growth with unchanging dividends, as opposed to high but stable prices and high dividends. However, we

can generate a more realistic boom if we allowed dividends in the initial regime to start at  at date 0 and

rise to  only if the initial regime survives long enough. Formally, suppose there is some finite date  such

that, as long as we stay in the initial regime,  =  until date  and  =  for  ≥  . Once we switch

regimes, dividends equal  forever.4 This specification accords with how new technologies promise eventual

rather than immediate profits, and how rents in boom markets are initially stable even as house prices

surge. If the regime remained unchanged through date  , the equilibrium from date  on would be as in

Proposition 2. Between dates 0 and  , the equilibrium path of prices
©

ª
=0

satisfy the law of motion

+1 =
¡
1 + 

¡

¢¢
 −  ≡ 

¡

¢

with the boundary condition that  = . We can use Figure 1 to solve for the path consistent with

this boundary condition. Essentially, since   , the price  must start above  at date 0 and rise

towards  at date  . The trajectory for the price  conditional on staying in the initial regime is given

in Figure 2. The asset price follows an explosive path that grows at an increasing rate that exceeds the

expected return to saving 


 , even as dividends remain constant The potential for high dividends that

might be realized in the future fuels the growth in asset prices. Thus, our framework can generate more

4This setup is related to Zeira (1999). He assumed dividends grow until a stochastic date. In both his setup and ours,

dividends rise more the longer the initial regime survives.
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realistic asset booms and not just a high constant price, but we would then need to solve for an entire price

path {}=0. For analytical convenience, we will continue to assume  is constant within each regime.

Our setup also abstracts from how asset booms start. One might have thought we could start in the low

dividend regime and transit to a temporarily high regime with some probability. But in that case, agents

in the initial low regime would still borrow to buy assets, gambling that the high dividend regime would

start next period. If dividends equal  throughout the high regime, the asset would trade at  in both the

initial and temporarily high regime, and the boom would start before dividends rise. This is reminiscent of

the Diba and Grossman (1987) result that asset bubbles are present from the very inception of the asset.

Martin and Ventura (2012) show one can get around this result by allowing for the arrival of new assets

that cannot be traded beforehand and let bubbles be associated with new assets. We could similarly allow

for new assets as per Remark 2. Most new assets would pay a predictable but decaying return. Periodically,

though, new assets arrive that start with temporarily high dividends.5 With some modifications, then, our

model can allow for periodic booms. Again, for simplicity we do not pursue this approach here.

Credit Booms: Next, we show that the asset boom coincides with a boom in borrowing against assets.

When  = , the amount agents borrow to buy assets is given by



1− 

Z ∞


 ()  (12)

By contrast, no one borrows to buy assets when  = .

Since informational frictions imply it is hard to distinguish between borrowing to buy assets and borrowing

for productive purposes, arguably the relevant empirical measure is not borrowing against assets but total

borrowing. The total amount agents borrow to buy assets or produce is given by

1

1− 

Z ∞


 () 

Since   0 while  = 0, the term 1
1− is higher during the boom. At the same time, with   ,

the integral
R∞


 ()  is smaller when  =  than when  = . Total lending can therefore rise or fall

when  falls to . When Φ ≤ Φ∗, savers lend out all of their endowment  when  =  but lend less than

 when  = . Only when Φ À Φ∗ can total borrowing fall with dividends. The asset boom is therefore

associated with a boom in lending against assets, and, when Φ is small, a boom in total lending.

Asset Bubbles: We next turn to whether the boom in our model can be viewed as a bubble, in the sense

that the price of the asset exceeds the present expected discounted value of its dividends. This question

is hard to answer empirically. But overvaluation is often used to justify the need for policy intervention.

We can compute the fundamental value of the asset in our model and ask whether the asset price indeed

exceeds fundamentals and whether this condition indeed determines whether intervention is warranted.

5To ensure the return on assets is riskless outside of booms may require one-off changes in the dividends of existing assets if

the assets that arrive ar risky to ensure the return on existing assets is the same as it would be if the new assets were riskless.
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We begin by defining the fundamental value of the asset in our model. For this, it will help to distinguish

several rates of return when  = . The first is the interest rate on loans  that borrowers are asked to

repay. Recall  is equal to the maximal return on the asset, i.e.,

1 + = 1 + 


(13)

During the boom, lenders will not expect to collect this interest in full, since a fraction   0 of lending

is used to buy assets and may result in default. Instead, lenders expect to earn 1 +

defined as

1 +

=
¡
1− 

¢ ³
1 + 



´
+ 

³
+


−Φ

´
(14)

Finally, the expected return to buying the asset is given by

1 +  =
(1−)(+)+(+)


(15)

These three returns can be ranked, with   
 ≥ . The last inequality follows from the fact that if

the expected return to buying the asset  exceeded 

, agents would prefer to buy assets than lend. But

demand for credit by entrepreneurs is positive at any finite interest rate, so this cannot be an equilibrium.

We need to take a stand on which rate to discount dividends when defining the fundamental value.

Arguably, the relevant discount rate is the one at which agents would be willing to trade intertemporally.

If an agent had a unit of resources, the best she can expect to earn on it is 

since in equilibrium she can

do no better than lending out her unit. We therefore use 

as our discount rate. Since the equilibrium is

stationary, the fundamental value of the asset  satisfies the recursive equation

 =
(+)+(1−)(+)

1+̄
(16)

Equation (16) uses 1 + 

as the discount rate and the fact there  = , since we argued in Section 1

that the price  coincides with the fundamental value . Rearranging (16) implies

1 +

=

(+)+(1−)(+)


(17)

Comparing (17) with (15) shows that    whenever 


  and  =  whenever 

= .

The discussion of how to solve for  and 

that precedes Proposition 2 establishes that for Φ ≥ Φ∗, the

expected return on loans 

must equal the expected return on the asset . In this case the price of the

asset coincides with fundamentals. But the same analysis implies that when Φ  Φ∗, the expected return

on loans 

strictly exceeds the expected return on the asset . In this case, the asset price exceeds

fundamentals. Whether a bubble exists therefore depends on Φ:

Proposition 3 Let  denote the value of dividends discounted at the expected return on loans ̄. Then

the difference between the price of the asset and its fundamental value  =  −  is

 = (
¡
+ 

¢
+ (1− ))

∙
1

 + ̄
− 1

 + ̄

¸
(18)

There bubble  is positive when Φ  Φ∗ but equal to 0 when Φ ≥ Φ∗.
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The fact that the asset is priced as if +1 =  with certainty does not on its own imply the price exceeds

fundamentals. Intuitively, bubbles arise in our model when leveraged agents who only care about the upside

potential of the asset are willing to pay more than its expected value to buy it. When Φ is small, savers

prefer to lend, and it is only leveraged agents who buy assets. In that case, the price of the asset will exceed

fundamentals. When Φ is large, lending against the entire stock of assets is too costly, and in equilibrium

savers will have to buy some of the assets. But savers who invest their own funds will refuse to pay more

than fundamentals, so a bubble cannot occur. Previous work on risk-shifting which ignored default costs

has tended to conflate risk-shifting with bubbles. But risk-shifting does not necessarily imply bubbles.

Although bubbles only arise when Φ  Φ∗, there is a sense in which agents spend too much on assets

regardless of Φ. To see this, note that since   
 ≥ , the return  that the marginal entrepreneur

can earn exceeds the expected return  on the asset, regardless of whether 

  or 


= . The

asset thus yields too low a return compared to what entrepreneurs can achieve, meaning its price is too

high. The price is too high not in the sense that it exceeds the present discounted value of future earnings,

but that it only reflects the private return on the asset to the borrower. Whether the price of the asset

exceeds fundamentals is arguably not the relevant concern for welfare. We return to this point in Section 3.

Realized Returns and Interest Rates: We next consider rates of return during the boom. Since

  , the realized return on investment, both for those who buy assets and for those who lend, will be

higher while the boom lasts. A boom will appear to be a good time for savers.

But even as realized returns must be higher during the boom, expected returns can be lower. The expected

return to lending is 

during the boom and  after the boom. The expected return 


defined in (14)

is a weighted average of 1 + 

and +


−Φ. Since  =    and  =   , we have

1 + 


 1 +  +



If the weighted average of 1 + 


and +


gives enough weight to the latter, e.g. if  is close to 1, the

expected return to lending will be below 1 + even before accounting for default costs. Asset booms can

therefore be times of high realized returns but low expected returns.

In addition, even as savers earn higher realized returns during the boom, the interest rate at which agents

borrow to buy risky assets is in an important sense too low. This is because when lenders cannot distinguish

safe and risky borrowers, the former end up cross-subsidizing the latter. We can formalize this intuition by

comparing the equilibrium in Proposition 2 to a hypothetical full-information benchmark. With complete

information, lenders would charge those who buy assets an interest rate at least as high as the maximum

return on the asset, 1 + b, where a hat denotes the asset price in full-information benchmark. At
the same time, they would charge entrepreneurs an interest rate equal to the expected return on the asset

(1− )
¡
1 +b¢+ 

¡
+ 

¢
b, as opposed to the maximum return on the asset in Proposition 2. At

this lower rate, entrepreneurs will borrow more under full information, leaving fewer resources to spend on
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the asset. As a result, the asset price b with full information will be lower than , which implies

 = 


 
In this sense, agents who borrow to buy risky assets are charged lower interest rates than they would to

borrow equally risky assets that lenders can easily evaluate, and the interest rate  doesn’t reflect the full

risk of the assets speculators purchase.

Fallout from the Crash: Finally, we turn to how asset booms end in our model. When dividends fall,

agents who previously borrowed to buy assets will be forced to default. This imposes a cost of Φ on

lenders. The collapse in asset prices thus triggers a fall in the resources this cohort can consume, above

and beyond the decline in the dividend income they earn. By construction, the decline is proportional to

the price of assets  during the boom. A larger boom thus implies a larger loss once the boom ends. In

our model this is because recovery costs are larger when more resources are invested in assets. But, as we

noted above, we view this as a stand-in for other channels in which a fall in asset prices would lead to lower

output, e.g. debt overhang and or deleveraging. In all of these mechanisms, the decline in output after a

crash increases in the size of the run-up in asset prices during the boom.

Our model can thus capture the asset booms and busts we see in practice. In the remainder of the paper,

we examine whether in our model there is a reason to intervene against these booms, and whether the

particular interventions policymakers have debated can in fact improve welfare.

3 Inefficiency of Equilibria

In this section, we argue that the asset boom in the high regime is inefficient in two distinct senses. The first

concerns misallocation: The marginal return to production during the boom exceeds the expected return on

assets, so there are gains to redirecting some resources spent on assets to production. The second concerns

excessive leverage: Agents who borrow to buy assets take on too much debt because they ignore the default

costs Φ they impose on others. These inefficiencies arise regardless of how Φ compares with Φ∗, i.e.,

regardless of whether asset prices exceed fundamentals. Given evidence of risk-shifting, policymakers would

not need to determine if bubbles are present to decide whether to intervene.

We begin with misallocation. As we noted above, when  = , the productivity of the marginal

entrepreneur is equal to the interest rate on loans . But  exceeds the expected return on loans 

,

since agents who borrow to buy assets can default. At the same time, 

is at least as high as the expected

return on the asset  or else savers would refuse to lend, which cannot be an equilibrium given demand

for credit from entrepreneurs is positive for any finite interest rate. Hence,   , which implies young

agents could achieve a higher return on their endowment if they shifted some of what they spend on assets

to the marginal entrepreneur. Intuitively, agents who borrow to buy assets ignore the losses their lenders

incur. As a result, their private gain to buying the asset exceeds its social return, and too many resources

15



are allocated to buying assets. Once the boom ends, the return on the asset  will be the same as the

productivity of the marginal entrepreneur  and resources will be allocated efficiently.

While a given cohort could secure a higher return by coordinating to shift resources from buying assets

to producing, doing so would hurt the previous cohort from whom they buy assets. Redirecting resources

to production therefore does not achieve a strict Pareto improvement in our model as specified. A similar

point was made in Grossman and Yanagawa (1993). They also studied an overlapping generations economy

in which agents can use resources to either buy assets or produce. While their model did not feature risk

shifting, it did feature a production externality that implies the return to production is higher than the

return on the asset. One of their key results was that despite this, it is impossible to make all agents better

off by reallocating resources. This is because the reallocation needed to improve how resources are allocated

would hurt the original asset owners. We now argue that this impossibility hinges on assuming an exogenous

supply of assets. If agents can create additional assets at a cost, as is certainly true for new technologies or

housing, shifting resources from asset creation to entrepreneurs can make all agents better off.

Formally, suppose the old at date 0 are endowed with neither goods nor assets, but they know how to

convert goods into assets. For simplicity, we assume assets can only be created at date 0. The technology

for producing assets is summarized by an increasing function  () which denotes the amount of goods

needed to produce the -th asset. This could be because old agents can each produce one asset but differ in

productivity. Since only the young are endowed with goods, they must provide goods to the old to create

assets. We assume the old collect the revenue from asset sales up front. They then use some of these goods

to produce assets and consume any of the goods left over. Optimality dictates they should create assets

up to the point ∗ at which the marginal cost  (∗) equals the price 0. Hence, they will collect 0∗ in

revenue, which exceeds the amount of goods  (∗) ≡ R ∗
0

 ()  needed to produce the ∗ assets they sell.

With endogenous asset creation, equilibrium condition (6) remains unchanged. However, we need to

replace  in (3) with 
∗ = 

−1 (0). The latter is increasing in  for all , and so we can show that

the equilibrium remains unique and qualitatively similar to before. Suppose we intervene and reduce the

quantity of assets produced at date 0 at the margin from its equilibrium value ∗. Since  (∗) = 0, the

consumption of the old will be unchanged. Cohorts born at each date  ≥ 0 can use the resources they
would have spent on the last asset for production. If  =  at date , the return on production  exceeds

the expected return  the asset would have delivered. If  =  at date , the return  on production

would be the same as the return  the asset would have delivered. Since Pr ( = )  0 for all , reducing

∗ would make all cohorts better off ex ante. The difference is that the intervention we are considering now

involves creating fewer assets and not just providing certain agents with fewer rents.

When default costs Φ  0, a second inefficiency emerges that corresponds to excessive leverage. Even if

we hold the supply of assets ∗ created at date 0 fixed, agents could be made better off if lenders would

directly buy the assets their borrowers purchase and reimburse those borrowers for the income they would

have earned. This avoids the deadweight loss Φ that lenders incur when borrowers default. Essentially,
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there is no socially useful purpose for agents to borrow and buy risky assets. But they do so in equilibrium

because they don’t bear the costs of their default. This same inefficiency would arise if Φ represented not

recovery costs but forgone output when asset prices fall because of debt overhang or deleveraging.

While these inefficiencies arise for any Φ  0, Proposition 3 implies bubbles only arise when Φ  Φ∗.

Thus, although bubbles can arise in our model, they are a symptom of an underlying distortion rather than

the root problem. Risk-shifting is costly not because asset prices exceed fundamentals, but because they

do not reflect the true social value of assets given the various externalities speculators impose on others.

Policymakers who have evidence of risk-shifting should intervene whether asset prices equal fundamentals

or not. The purpose of intervention is not to equate prices with fundamentals but to discourage speculation

that leads to excessive asset creation and results in deadweight losses from default.

Since policymakers presumably face the same difficulties as lenders in distinguishing speculation from

productive borrowing, they cannot simply discourage or ban speculation. They can, however, turn to blunt

tools such as monetary policy or leverage restrictions that affect speculation as well as other investments.

The remainder of the paper considers whether such interventions can still improve welfare.

To study these interventions, we will need to relax some of the simplifying assumptions we have relied

on so far. First, to capture the effects of monetary policy, we must relax our assumption that each cohort

is endowed with an exogenously fixed supply of goods  to allocate to production and assets. While this

assumption is convenient, models of monetary policy often rely on price rigidities that allow economic

activity to expand or contract when the monetary authority moves so that monetary policy matters. In the

next section, we drop our assumption of a fixed endowment  to incorporate this mechanism.

To capture the effect of leverage restrictions, we will need to relax our assumption that entrepreneurs are

endowed with nothing. When borrowers have no resources, there is no way to restrict leverage other than

cutting credit off altogether. In Section 5, we return to assuming savers are endowed with a fixed amount of

goods, but we assume entrepreneurs are also endowed with resources. While entrepreneurs without wealth

must take on infinite leverage, those with wealth face a choice of how much leverage to take on. This

introduces a complication we have managed to avoid so far, namely that we need a continuum of markets to

span all possible choices of leverage agents might entertain. By contrast, when agents had no endowment,

all credit could be intermediated in a single market. We discuss how to deal with the complication of a

continuum of markets, and then study restrictions on the degree of leverage borrowers can take on.

4 Monetary Policy

This section explores monetary policy. As we noted above, this requires us to abandon our assumption that

savers are endowed with an exogenous amount of goods. We follow Galí (2014), who also studies monetary

policy in an overlapping generations economy with assets. First, we assume savers are endowed with labor
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that can be used to produce goods rather than goods themselves. Second, we introduce a monetary authority

and monopolistic competition so the suppliers who hire labor set the prices of their goods. We assume the

monetary authority moves after goods producers set their prices but before they hire labor. This allows the

real wage — and consequently output — to respond to monetary policy.

We leave the details of the analysis to Appendix B and only sketch the results here. Our assumptions

imply labor supply only depends on the real wage. Under these assumptions, in the absence of money, the

equilibrium real wage will be constant over time and independent of . Thus, absent money, the reduced-

form representation of our economy is the same as we have assumed up to now: Each cohort of savers has

a constant budget  which it allocates between entrepreneurial activity and purchasing assets.

Next, we introduce a monetary authority that can announce a nominal interest rate at which it is willing

to borrow and lend. As in Galí (2014), we consider an equilibrium in which money doesn’t circulate. This

requires inflation to adjust so that the real value of the nominal rate set by the monetary authority equals

the real return agents earn elsewhere, leaving agents indifferent to holding money. At the beginning of

each period, producers set the prices of the goods they expect to sell. The monetary authority then sets

a nominal interest rate. Finally, producers hire workers and produce goods. If producers could perfectly

anticipate what the monetary authority will do, the nominal interest rate will not affect the real wage or

any other real variable: Producers will set their prices as a markup over the nominal wage they know will

prevail, which implies the same real wage as in the absence of money and hence the same earnings .

If producers cannot perfectly anticipate what the monetary authority will do, producers will set their

price as a markup over the expected nominal wage that will prevail after the monetary authority moves.

If the nominal interest rate this period turns out to be higher (lower) than expected, the nominal and real

wage can be higher (lower) than expected. Essentially, an unanticipated move by the monetary authority

allows a self-fulfilling fall in demand for goods. Lower demand for goods means producers don’t need to

hire as much labor, the real wage falls, and since agents earn less, demand for goods will indeed be lower.

A surprise move by the monetary authority at date 0 can thus change earnings 0, just as an income tax

or subsidy would. Since producers set prices at the beginning of each period, an intervention at date 0 will

not affect real variables beyond date 0 We can therefore deduce the implications of such a policy on asset

prices and interest rates using comparative statics on 0 in our original endowment economy holding  = 

at all other dates. The next proposition, based on our analysis in Appendix B, summarizes these effects.

Proposition 4 An unanticipated monetary contraction at date 0 that reduces earnings 0 below the earnings

 that would have prevailed absent any intervention leads to a lower asset price 0 and a higher real interest

rate on loans 
0 at date 0 than would have prevailed absent any intervention.

We next turn to the welfare implications of a contractionary intervention at date 0. Since an intervention

at date 0 will have no impact on real variables beyond date 0 cohorts born at dates  = 1 2 3  will be
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unaffected. The cohort born at date 0 works less, and expects to consume the amount

£
(1− )

¡
 + 1

¢
+ 

¡
+ 1

¢¤− Φ0 +

Z ∞
0

(1 + ) ()  (19)

The first term in (19) represents the expected payout on the asset at date 1 and is unaffected by what the

monetary authority does at date 0. The next term represents expected default costs. A contractionary

policy at date 0 drives down the price 0 and lowers the expected costs of default. The last term represents

the output entrepreneurs born at date 0 produce at date 1. Since tighter monetary policy increases 
0 ,

fewer entrepreneurs produce. A contractionary monetary policy thus mitigates excessive borrowing against

assets but exacerbates underproduction by entrepreneurs. The impact of the intervention on this cohort is

ambiguous, but for sufficiently large Φ the first effect will dominate and this intervention would allow this

cohort to consume more and work less. Finally, the old at date 0 will be worse off, since their earnings 0

fall. However, since the effect of policy on 0 and 
0 is independent of Φ, for sufficiently large Φ it will be

possible for the cohort at date 0 to leave the old at date 0 whole and still be better off on account of the lower

default costs. Hence, for large Φ, a contractionary policy can be used to generate a Pareto improvement,

at least if we can redistribute resources across agents. Our result is reminiscent of Svensson (2017), who

examines the tradeoff between the cost of tighter monetary policy against the benefits of lowering the odds

of a financial crisis. In our framework, the probability the boom ends is fixed at , but tighter monetary

policy mitigates the severity of the output decline if the boom ends. The gain from a lower expected fall in

output at date 1 must be compared to the cost of impoverishing agents at date 0.

It turns out there is a better way to use monetary policy to intervene against an asset boom. Suppose the

monetary authority did nothing at date 0 but credibly promised to be contractionary at date 1 if the boom

continued, i.e., if 1 = . Here, we assume the dividend  is revealed after producers set their prices at the

beginning of date  but before the monetary authority moves. Since producers at date 1 set prices based on

the expected nominal wage as a function of the dividend 1, monetary policy can only be contractionary

when 1 =  if it is also expansionary when 1 = . That is, the monetary authority intervenes to set

1   if 1 =  and 1   if 1 = . Per Proposition 4, this policy will depress 1 and increase 
1 if

1 = . However, as we show in Appendix B, this intervention will lower both 0 and 
0 at date 0.

Proposition 5 A commitment by the monetary authority at date 0 to set 1    1 leads to a lower asset

price 0 and a lower interest rate on loans 

0 at date 0 than would have prevailed absent any intervention.

In contrast to a direct immediate intervention that exacerbates misallocation, a threat to tighten if the

boom continues mitigates both excessive leverage and misallocation at date 0. This approach could raise

welfare even when immediate tightening cannot. Formally, cohorts born at  = 2 3  will be unaffected by

an intervention at date 1. We show in Appendix B that this intervention will make the cohort born at date

1 better off if 1 = . Although they work more, the monopoly power we assume so that firms act as price

setters implies inefficiently low employment in the absence of intervention, so higher employment is better.

Whether the cohort born at date 1 will be better off if 1 =  is ambiguous, just as a direct intervention at
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date 0 is: This cohort can fund less production by entrepreneurs but will incur smaller default costs Φ1 .

Even when Φ is small, though, as long as the probability  that dividends fall is close to 1, this cohort

can be made better off ex ante. The cohort born at date  = 0 will be strictly better off, as both expected

default costs Φ0 are lower and more entrepreneurial activity is financed when 
0 is lower. Finally, the

old at date 0 will be worse off given they earn less from selling assets at a lower price 0 . But when Φ  0,

the young at date 0 can compensate the old and remain better off.

The reason delayed intervention works better is that it is more targeted at speculators. Tightening at

date 1 has no direct effect on the entrepreneurs who borrow at date 0 to produce, but it will lower the

price speculators receive from selling the asset if the boom continues. Essentially, a state-contingent policy

is substituting for the type of contingencies savers would want to incorporate if they weren’t restricted to

simple debt contracts. The way in which monetary policy is implemented matters for welfare.

5 Macroprudential Regulation

We now turn to macroprudential policy. Intuitively, leverage restrictions reduce demand for credit, which

lowers interest rates. Lower interest rates in turn tend to raise asset prices, especially if, as in our model,

demand for credit falls more among entrepreneurs, freeing up resources for speculation. Tighter leverage

restrictions thus have the opposite effect on interest rates and asset prices as tighter monetary policy. At

the same time, leverage restrictions reduce the fraction of assets financed with borrowing. The overall effect

of this intervention is thus ambiguous: Fewer assets are financed with debt, but agents spend more per

asset. In contrast to tighter monetary policy, leverage restrictions may increase welfare losses from default

if they raise total borrowing against assets. Our results offer a contrast to Caballero and Simsek (2019), who

describe a different economy where leverage restrictions and tighter monetary policy are welfare equivalent.

To analyze leverage restrictions, we need to modify our assumption that entrepreneurs are endowed with

nothing. When entrepreneurs lack all resources, any down-payment requirement would shut down credit. To

analyze interventions that restrict rather than eliminate leverage, borrowers must be able to keep producing

and speculating even when leverage is restricted. We therefore allow entrepreneurs to be endowed with

resources. But this modification introduces its own complication. When agents had nothing, they had to

be infinitely levered. Now they must choose how much leverage to take on. This requires multiple markets

to accommodate all possible leverage choices rather than a single market as we have considered so far.

To keep the analysis tractable, we return to assuming agents are endowed with goods rather than labor.

As before, each cohort consists of unproductive savers endowed with  total goods and entrepreneurs who

can convert goods at date  into goods at date  + 1. But rather than assume entrepreneurs are equally

endowed with  = 0 and differ in productivity , we now consider the opposite case where entrepreneurs

differ in endowments  and share the same productivity ∗. We discuss the case where both  and  vary

across entrepreneurs at the end of this section.
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We assume the wealth of entrepreneurs  is distributed uniformly. Specifically, for each  ∈ [0 1], there
is a constant density 2 of entrepreneurs with wealth , where  is the endowment of savers and  is a

constant such that 0    1. The combined endowment of all entrepreneurs is thereforeZ 1

0

 (2)  = 

The total endowment of savers and entrepreneurs is (1 + ) . To produce at capacity, entrepreneurs needZ 1

0

(1− ) (2)  = 

Since   1, entrepreneurs require fewer resources than savers have, in contrast to what we assumed in (2).

We assume the common productivity ∗ is large enough to exceed the maximal return on the asset. To

establish that this maximal return is finite, observe that the asset price  is bounded above by (1 + ) ,

the most each cohort has to spend on the asset, and is bounded below by (1− ) , the amount of resources

left to spend on the asset if all entrepreneurs produce at capacity. The maximal return on the asset occurs

when +1 = , the price of the asset at date  assumes its lowest value (1− ) , and the price at  + 1

assumes its maximum value (1 + ) . We assume 1 + ∗ exceeds this return, i.e.,

1 + ∗ 
 + (1 + ) − (1− ) 

(1− ) 
=

 + 2

(1− ) 
(20)

Assumption (20) ensures production dominates other investments in terms of return, so all entrepreneurs

will want to produce at capacity in equilibrium. This allows us to avoid solving for the endogenous fraction

of entrepreneurs funded in each of a continuum of markets, which greatly simplifies the analysis.

Since entrepreneurs have positive wealth, they can help finance their investments. We continue to assume

lenders cannot observe what borrowers invest in, but they can observe the resources borrowers use to finance

their project. Verifying that borrowers invest their own wealth is not the same as verifying what they invest

in. A lender cannot observe any additional resources his borrower has beyond what she invests in her

project. Essentially, borrowers choose how much to put in the shell entity they borrow through. By paying

a share of their investment, the borrower discloses resources that the lender can go after in case of default.

Formally, borrowers choose the fraction  ∈ [0 1) of their investment to finance. We model this as a
continuum of markets indexed by  ∈ [0 1). An agent who borrows in market  can borrow 1−


units

for each unit of her own wealth that she invests. She can thus leverage her endowment of  to finance an

investment of size 

. When   0, the choice of leverage is non-trivial: By going to a market with a lower

, an entrepreneur can borrow more and produce at a larger scale, but this will leave their lender with

a smaller cushion to go after in case of default. Back when we assumed all entrepreneurs had no wealth,

agents had no choice. They could only borrow in market  = 0 and choose infinite leverage. Now that

agents have wealth, we need a market for each  ∈ [0 1) to accommodate any leverage they might choose.
The reason we assumed entrepreneurs had no resources up to now is precisely to focus on a single market.
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We now define and solve for an equilibrium when there is a continuum of markets. To anticipate where

we are going, we describe an equilibrium in which entrepreneurs with wealth  go to market  =  and

invest their entire endowment in production, borrowing 1−  to produce at capacity. Entrepreneurs with

different  thus sort into different markets. As before, when  = , some agents will borrow to buy

assets in equilibrium. However, they will only borrow in markets with low . This motivates us to consider

macroprudential leverage restrictions that involve shutting down markets where  is below some floor .

5.1 Equilibrium with Multiple Markets

An equilibrium in our economy still consists of a path of asset prices {}∞=0 and a path of interest rates,
but the latter now consists of a path of interest rates { ()}∞=0 for each market  ∈ [0 1) and amounts
borrowed in each market  ∈ [0 1) for each purpose. Let  () and 


 () denote the rate at which agents

borrow in market  to buy assets and produce, respectively, and  () ≡  () + 

 () denote total

borrowing in market . We can integrate these rates to obtain the total amounts borrowed in all markets,R 1
0
 ()  and

R 1
0


 () . Although we refer to borrowing rates, we do not require agents to borrow

infinitesimal amounts in all markets. Indeed, once we introduce leverage restrictions, there will be a market

that will attract a positive mass of borrowers. We discuss how to deal with this formally in Appendix C,

but, loosely, such markets can be viewed as having infinite borrowing rates. We refer to market  as inactive

if  () = 0 and active if  ()  0. The price , interest rates  (), and amounts borrowed  () and



 () must ensure markets clear when agents acts optimally, just as with a single credit market.

To determine if lenders are optimizing, we need to know what they expect to earn from lending in any

market  ∈ [0 1). Building on our previous notation, let  () denote the expected return to lending at

date  in market . If market  is active, the expected return  () to lending in market  must equal

what lenders recover from the agents they lend to. We can thus deduce  () from the interest rate  ()

and the amounts  () and 

 () agents borrow to buy assets and produce, respectively. But if market 

is inactive, there is nothing to guide lenders on what to expect if they were to lend to a market where no

borrowers show up. Instead, we need to assign an expected return  () to each inactive market as part

of our definition of an equilibrium. In what follows, we first look for an equilibrium in which all markets

are active to avoid the question of how to assign  () in inactive markets. We then discuss equilibria in

which markets can be inactive. This naturally leads into our analysis of regulatory interventions in which

some markets are inactive by decree rather than because of what agents believe.

We begin with the case where  =  for all . As in Section 1, we proceed as if equilibrium prices are

deterministic and verify this is the case in Appendix C. In this case there will be no default, and so the

expected return to lending  () will equal the interest rate on loans  () in each active market . The

expected return in all active markets must be the same for lenders to agree to lend in all of these markets,

and so  () must be the same in all active markets. Moreover, this common interest rate must equal the

return on the asset 1+  ≡ ++1


to ensure savers agree both to buy assets and to lend in active markets.

That is,  () =  in all active markets . At these interest rates, borrowing to buy assets is unprofitable
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given   0. Since (20) ensures ∗ exceeds , all entrepreneurs will want to borrow in order to produce

at capacity. Given  () is the same for all , entrepreneurs will be indifferent as to which market they

borrow in, as long as they borrow enough to reach capacity. This includes the case where those with wealth

 borrow 1−  in market  = , an arrangement that ensures all markets are active.

Since all entrepreneurs will produce at capacity, the amount invested in production is 2. Any of the

total endowment (1 + )  of each cohort not used to produce will be spent on the asset. This implies

 + 2 = (1 + )  (21)

It follows that  = (1− )  for all . The return to buying the asset  and the interest rate on loans

 () in all markets  will then be


(1−) . This leads to the following analog to our earlier Proposition 1:

Proposition 6 When  =  for all , there exists an equilibrium in which all markets are active. In

any such equilibrium,  = (1 − ) ≡  for all , () =


(1−) ≡  for all  ∈ [0 1) and all , all
entrepreneurs borrow and produce at capacity, no agents borrow to buy assets, and only savers hold assets.

Next, we turn to the case where  =  at date 0 and permanently switches to  with constant probability

 per period. We again use a superscript to refer to an equilibrium object at date  when  = . We begin

by solving for equilibrium interest rates. For each active market  where  ()  0, either agents borrow to

buy assets, i.e.,  ()  0, or they do not, i.e., 

 () = 0. In the latter case, there will be no default and

the expected return to lending 


 () will equal the interest rate on loans 

 (). In equilibrium, 



 ()

must be the same in all active markets for lenders to agree to lend in these markets. Denote this common

expected return by 


 . Then 
 () = 



 in any active market  in which  () = 0.

Consider next an active market  in which agents do borrow to buy assets, i.e.,  ()  0. Agents would

only borrow to buy assets if they intend to default if the return on the asset is low. Borrowing to buy assets

and not defaulting cannot be profitable, since lenders would not lend at an interest rate below the expected

return they could earn from buying the assets themselves. As long as   0, the only way we can get agents

to borrow to buy assets is if they default when the returns to the asset are low. The expected payoff from

this strategy per unit spent to buy assets is given by

(1− )
h
+1+


− (1− )

¡
1 +

 ()
¢i

(22)

For each unit of resources agents spend on assets by borrowing in market , a fraction  must come from

their own wealth. If they had lent out this fraction instead, they would heave earned (1 + 


 ). We now

argue that in equilibrium, this payoff must equal (22). If (1 + 


 ) exceeded (22), nobody would borrow

to buy assets in market  given they could earn more from lending, contradicting the fact that  ()  0.

Conversely, if (1 +


 ) were lower than (22), no agent would be willing to lend in any market given they

can borrow in market  to buy assets, again contradicting the fact that  ()  0. Equating the two payoffs

yields an expression for the interest rate on loans 
 () in any active market  in which  ()  0:

1 +
 () =

1
1−

∙
+1+


− 


1+






1−

¸
(23)
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Thus, we have expressions for the interest rate 
 () if 


 () = 0 and if  ()  0, respectively. The

next lemma, derived in Appendix C, shows there exists a cutoff Λ ∈ [0 1) such that  () is given by

(23) in markets   Λ but is equal to 


 in markets  ≥ Λ .

Lemma: If all markets are active, then there exists a cutoff Λ ∈ [0 1) such that

1 +
 () =

⎧⎪⎨⎪⎩
1

1−

∙
+1+


− 


1+






1−

¸
if  ∈ [0Λ )

1 +


 if  ∈ [Λ  1)
(24)

Figure 3 plots the schedule of interest rates from (24). In market  = 0, where agents are infinitely levered,

the interest rate 
 (0) equals the maximal return on the asset,

+1+


. This is the same as in Section 2,

where  = 0 was the only possible market. The logic is the same: When agents put no resources down, they

must hand over all returns from the asset to the lender to ensure they earn no profits. For 0   ≤ Λ ,
the interest rate  () decreases with . We prove this formally in Appendix C, but intuitively, when the

borrower effectively pledges more of her own resources, the lender need not charge as much in interest to

cover shortfalls in case of default. Finally, for  ≥ Λ the interest rate  () is constant and equal to 


 .

Figure 3 reveals that, in equilibrium, credit markets fall into two groups: In markets with   Λ there

is some borrowing to buy assets, while in markets with  ≥ Λ agents only borrow to produce. We know

this because in markets with   Λ the interest rate 

 () exceeds the expected return 



 lenders earn.

If lenders are to earn earn 


 , some borrowers in these markets would have to default. As an aside, for

  0, agents who buy risky assets must invest their own wealth in assets. They must therefore earn strict

profits if +1 =  to offset their losses if +1 = . By contrast, in markets with  ≥ Λ , the interest rate
on loans 

 () = 


 . For lenders to earn 


 , all borrowers must repay in full. Since we know agents

only borrow to buy assets if they intend to default, the absence of default means agents in these markets

only borrow to produce. Intuitively, borrowers won’t speculate if they have enough skin in the game.

Given the equilibrium interest rates schedule (24), we can now solve for what entrepreneurs do. Recall

that (20) implies ∗ exceeds the maximal return on the asset. We just argued 
 (0) is equal to this

maximal return, and that 
 (0) exceeds 



 , the expected return to lending. 


 is also the most agents

can expect to earn by leveraging their wealth in some market  to buy assets. Entrepreneurs should thus

use their endowment  to produce and earn the highest return. They must then choose whether to borrow

in some market  ∈ [0 1] to scale up their production, where we include  = 1 to denote no borrowing.

Consider an entrepreneur with wealth   Λ . If she borrowed in market  = , she could borrow up

to 1 −  at an interest rate of 


 , the lowest available interest rate on loans. If she borrowed in some

market   , she could borrow more than 1−. But there is no benefit to this extra borrowing given her

capacity. Moreover, the interest rate in this market would be the same or higher than 


 . So there is no

advantage to going to markets    over going to market  = . If she borrowed in some market   ,

she would have to borrow less than 1 − , and she would face the same interest rate 


 . This too offers
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no benefit over going to market  = . The best this entrepreneur can do is go to market  =  to borrow

1− , although she could also achieve the same payoff going to any market  ∈ £Λ  ¤.
Next, consider an entrepreneur with wealth  ≤ Λ . If she borrowed in market  = , she could borrow

up to 1 −  at an interest rate of 
 (). If she borrowed in some market   , she would be able

to borrow more than 1 − , but she has no use for this extra borrowing. Moreover, the interest rate in

this market would be higher than 
 (). If she borrowed in some market   , she would have to

borrow less than 1 − . But she would face a lower interest rate. The question is whether it is worth

reducing capacity to obtain a lower rate. Her payoff from borrowing in market  ∈ [Λ ] would be


[1 + ∗ − (1− ) (1 + ())]. Substituting in from (24), this is equal to





∙
1 + ∗ − +1+


+



1+






1−

¸
This payoff is decreasing in , so there is no advantage to borrowing in these markets instead of  = .

Borrowing in any market  ∈ (Λ  1) is dominated by borrowing in market  = Λ , which we already
argued was worse than borrowing in  = . So borrowing 1−  in market  =  is uniquely optimal.

In any equilibrium where all markets are active, then, entrepreneurs with wealth  ∈ [0Λ ) will borrow
in market  = , while those with wealth  ≥ Λ would borrow in some market between Λ and . This

implies 

 () = 2 for  ∈ [0Λ ) while  () is indeterminate for  ∈ [Λ  1). This indeterminacy is

irrelevant for allocations or welfare, however, since in any such equilibrium we know agents with wealth

 ≥ Λ borrow 1 −  at an interest rate of 1 + 


 . Just as before, we can ensure all markets are active

by assuming entrepreneurs with wealth  ≥ Λ also borrow 1−  in market  = .

Once again, any resources the young do not use to produce will be spent on the asset. This implies

 + 2 = (1 + )  (25)

It follows that  = (1− )  for all . This is the same price as when  = . Although the price is the

same, the expected return to buying the asset when  =  is higher, with 1 +  =
(1−)+
(1−) .

As in Section 2, we managed to solve for the equilibrium price  and the interest rates 
 () for all

markets  without solving for the amounts people borrow to buy assets. We now solve for the amounts

agents borrow to buy assets in each market,  (). Recall that the expected return to lending 


 () = 




for all active markets . Let  () ≡  ()  () denote the fraction of lending in any active market 

that is used to buy assets. Equating 


 () with 


 implies

(1−  ())

 () +  ()

∙


(1− ) 
−Φ

¸
= 



 (26)

For markets   Λ , the fact that 

 ()  



 implies  ()  0. Some agents must borrow in these

markets to speculate. Using the value of  () in (24), we can solve for  () and then for 

 () using

the fact that 

 () = 2. Since the interest rate on loans 


 () is decreasing in  for  ∈ [0Λ ), then
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 () and  () must be decreasing in  for   Λ . There is more borrowing for speculation in markets

with more leverage. This is not because leverage makes speculation more attractive, but because there must

be just enough speculation in equilibrium to ensure the return to lending equals 


 in all markets. There

must be more borrowing for speculation in markets where lending to entrepreneurs is more profitable.

Earlier we established that agents do not borrow to buy assets in markets  ≥ Λ . Hence,  () = 0 for
 ∈ [Λ  1), and so  () is uniquely determined for all  ∈ [0 1) in any equilibrium in which all markets

are active. We can also say something about who engages in speculation. In Section 2, who bought assets

was indeterminate. This is still true for market  = 0. But in markets   0, borrowers must invest their

own wealth to speculate. Entrepreneurs with   Λ invest all of their resources in production. So it

must be savers and wealthy entrepreneurs who borrow to buy assets in markets  ∈ ¡0Λ ¢. But since
entrepreneurs cannot all produce at capacity on their own, some savers must also lend in equilibrium.

We have now solved for the equilibrium price  , the interest rates on loans 

 (), and the amounts

 () and 

 () agents borrow to buy assets and produce for all . However, these are defined in terms of

the expected return to saving 


 , which we have yet to derive. To solve for 


 , let us consider all savings

in this economy. First, savings are used to finance production by entrepreneurs, which yieldsZ 1

0

¡
1 +

 ()
¢
(1− ) (2) 

Second, savings are used to buy assets, directly or indirectly through loans. The expected earnings from

these investments equal
¡
1 + 

¢
 . From this, we must net out expected default costs. Let  denote

the fraction of spending on assets that is financed with some debt. These purchases will result in default if

returns are low. Since default is proportional to the size of the borrower’s project, expected default costs

are equal to  Φ

 =  Φ (1− ) . Adding these up, these earnings must equal (1 +



 ). Hence,

(1 +


 ) =
£
1 +  −  Φ

¤
(1− ) +

Z 1

0

¡
1 +

 ()
¢
(1− ) (2)  (27)

Finally, we need an additional equation to characterize  . When the expected return to lending 




exceeds the expected return to buying the asset , only agents who borrow will buy the asset. In that

case,  = 1. When 


 = , then  would have to ensure that 


 is indeed equal to . We can

combine the two conditions into a single equation:

1 +


 = max

½
1 + 

£
1 +  − Φ

¤
(1− ) +

Z 1

0

¡
1 +

 ()
¢
(1− ) (2) 

¾
(28)

It is easy to verify that when 


  , equations (27) and (28) imply  = 1, and when 


 =  we

can find a unique value of  that will equate the two. Since  is time invariant, the solutions to these

equations, 

and , are also time invariant. Given a value for 


, we can solve for the time invariant

cutoff Λ as the smallest value of  for which  () = 

. This completes the characterization of an

equilibrium when all markets are active, which yields the following analog to Proposition 2:
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Proposition 7 There exists an equilibrium in which all markets are active while  = . In any such

equilibrium, the asset price is given by

 = (1− ) ≡ 

and, in the limit as → 0, the interest rates on loans in different markets are given by

1 +
 () = max

n
1 + ̄ 1

1−
h
1 + 


− (1+̄)

1−
io

where ̄ is the value that solves (27) and (28) together with . Borrowing for buying assets  ()

ensures ̄() = ̄ for  ∈ [0Λ) and  () = 0 for  ∈ [Λ 1). Borrowing for production is given by


 () = 2 for  ∈ [0Λ), while for  ∈ [Λ 1) must satisfy

R 1
Λ



 () = (1− (Λ)2).

As in Proposition 2, some agents blend in with entrepreneurs and borrow to buy assets. They do this

in markets with high leverage, although not just in market  = 0 where leverage is infinite. The high

dividend regime still gives rise to credit booms and, if Φ isn’t too large, bubbles. One difference from what

we had before is that now all entrepreneurs produce at capacity, while before only an endogenous fraction

of entrepreneurs did. As a result, an asset boom is no longer associated with misallocation: There is no

production we could do instead of buying assets. However, borrowing to buy assets remains socially wasteful

when Φ  0, and an intervention might still raise welfare by curbing excessive leverage.

So far, we have only considered equilibria in which all markets are active. But for any , we can always

construct an equilibrium in which market  is inactive by setting the interest rate on loans  () above 
∗

to ensure no agent would want to borrow in that market, and the expected return  () to be arbitrarily

low to ensure no one would want to lend in market . Such equilibria are essentially coordination failures

where markets that could sustain trade are instead inactive. Inactivity in some markets will generally affect

prices and interest rates in remaining active markets, and so characterizing equilibria with inactive markets

would require us to solve again for interest rates, asset prices, and amounts borrowed. We will not try to

characterize all such equilibria. However, we will now turn to studying interventions that shut down markets

with low . This is equivalent to studying equilibria in which markets with low  are inactive because of

what agents believe rather than because they were shut down by fiat. The reason markets are inactive is

irrelevant for how inactivity affects other markets. Given our interest in the effect of restricting markets

that would otherwise trade, it seems natural to focus on equilibria in which markets are maximally active.

5.2 Leverage Restrictions

Proposition 7 implies speculators only borrow in markets with low . A natural way to intervene against

speculation, then, is to shut down all markets  below some floor , or, alternatively, to cap the leverage

agents can take on. Agents with wealth    can only undertake projects of size at most   1. For

simplicity we consider a permanent floor, although we could equally consider a floor only while  = .

We restrict attention to equilibria in which all markets  ≥  are active. The equilibria in Proposition

7 is then a special case where  = 0. When   0, we can use the same arguments to show that interest
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rates  () will be given by (24) when  = . Entrepreneurs will therefore still want to invest all of their

wealth  and borrow 1− to produce at full capacity. But entrepreneurs with    can no longer do so.

Since their profits are decreasing with  for   , these entrepreneurs will all flock to  and produce at

scale . The total inputs entrepreneurs will use to produce is thenZ 

=0

2

µ




¶
 +

Z 1

=

(2)  =



2
Á

0

+ 2 (1− )

= + (1− ) 2

The amount that remains to spend on the asset is (1 + )  minus the above, which pins down its price:

 = (1−  (1− ))  (29)

Increasing  will lead to a higher asset price. Intuitively, leverage restrictions force poor entrepreneurs

to operate at a smaller scale. Since savers want to save a fixed amount  regardless of , the decline in

production will release resources to buy assets, pushing  up. When  is imposed permanently, the same

logic implies  = (1−  (1− )) . The expected return on the asset when  =  is therefore

1 +  =
(1− )

¡
 + +1

¢
+ 

¡
+ +1

¢


= 1 +
(1− ) + 

(1−  (1− )) 

Increasing  thus reduces the expected return to buying the asset. It is hard to summarize the effects of

increasing  on the entire schedule of interest rates  (), but we show in Appendix C that the expected

return to lending 

declines with . Intuitively, increasing  depresses demand for credit, and so should

lower interest rates. We can summarize the effects of raising  as follows:

Proposition 8 The asset price  = (1− (1− )) is increasing in , while the expected returns on the

asset ̄ =
(1−)+
(1−(1−)) and from lending ̄ are decreasing in  for a permanent floor .

Note how this intervention compares with contractionary monetary policy in the previous section. Both

policies reduce output. However, tighter monetary policy reduces the resources 0 agents have access to

today, while leverage restrictions reduce the amount entrepreneurs produce for next period by forcing poor

entrepreneurs to operate below capacity. This difference implies that in our model, the two interventions

have the opposite effect on asset prices and the return to savings. Nevertheless, tighter monetary policy

and leverage restrictions might both discourage speculation. Even though leverage restrictions increase the

asset price , they also tend to reduce the share of assets purchased with debt . Indeed, setting  above

Λ will drive  to 0 given that no agent will borrow to buy assets in markets  ≥ Λ. More generally,
expected default costs are equal to Φ. Whether increasing  raises the deadweight loss from default

depends on how increasing  affects  and , respectively. Our next result shows that under certain

conditions, increasing  will increase  without changing . Specifically, this will be the case if the floor

 is already low and  = 1, as well as if  is already high enough to exceed Λ so that  = 0. In these

cases, raising  will make agents worse off. But we also argue there exists an intermediate value of  for

which increasing  will decrease  enough to lower expected default costs Φ. Increasing  is thus

ambiguous, and can in principle either increase or decrease welfare.
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Proposition 9 There exist cutoffs Λ0 ≤ Λ1  1 in [0 1) such that

1. If   Λ0, increasing  leaves  = 1, increases expected default costs Φ, and leaves fewer

goods for cohorts to consume from date  = 1 on.

2. If  ≥ Λ1,  = 0 and there is no default. Increasing  then leaves fewer goods for cohorts to consume
from date  = 1 on.

3. If Λ0    Λ1, there exist values of  at which increasing  lowers  and expected default costs

Φ. In this case, increasing  while  =  can be Pareto improving for large Φ.

The fact that leverage restrictions can be counterproductive and increase speculation is a new result as

far as we know. Stein (2013) argues leverage restrictions may be ineffective, but his point was that lenders

borrowers can circumvent them, not that they might contribute to more speculation. The logic behind our

result is that risk-shifting models require an additional investment activity to cross-subsidize speculation.

If this other investment is particularly sensitive to leverage restrictions, restricting leverage may end up

redirecting resources toward speculation. We anticipate that the same would hold true in risk-shifting

models where speculators and less risky investors buy the same asset, as would be the case with housing.

That is, if the demand for housing by liquidity constrained home buyers is particularly sensitive to leverage

restrictions but the amount of funds available for mortgage lending is relatively inelastic with respect to

interest rates, leverage restrictions could end up encouraging speculation on housing.6

While imposing leverage restrictions has ambiguous welfare effects, in our model a threat to restrict

leverage in the future will unambiguously make things worse today. Recall that tighter monetary policy

at date  + 1 will lower +1, discouraging speculation at date . By contrast, raising  at date  + 1 will

increase +1. Regardless of how it affects +1, a higher 

+1 encourages speculation at date . This

contrast highlights how the two interventions affect asset prices and interest rates in opposite ways.

That said, we should be clear that while tighter leverage restrictions generally reduce demand for credit

and lead to lower interest rates, the prediction of our model that this always leads to higher asset prices will

not as naturally generalize. Suppose we let the wealth and productivity of entrepreneurs follow a general

distribution  ( ). Entrepreneurs with low productivity would act like savers while entrepreneurs with

high productivity would borrow to produce. An increase in  that lowers the return to saving could induce

some entrepreneurs who are on the margin to switch from lending our their wealth to borrowing in order to

produce. If enough entrepreneurs switch from lending to producing, the fall in lending and the increase in

6While there are no direct analogs to our result, two recent papers similarly point out counterproductive aspects of central

bank policies. Hachem and Song (2018) show that forcing banks to hold more liquidity may paradoxically lead to more

interbank lending as large banks hold fewer reserves to hurt the small banks they compete with. Chen, Rhen, and Zha

(2018) argue that contractionary monetary policy in China led to an increase in lending by shadow banks as a fall in deposits

encouraged banks to lend more to shadow banks to avoid liquidity coverage requirements.
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demand for borrowing to produce could leave fewer resources to spend on the asset, and its price will fall.

We confirm numerically that there exist distributions  ( ) for which increasing  reduces  .
7

While increasing  can in principle dampen asset prices, this will only be possible if there is risk-shifting.

When  = , increasing  will raise  regardless of the distribution  ( ). To see this, recall that there

is no default when  = . In that case, the interest rate 
 () would equal the same 


 for all . This

common rate 
 and the asset price 


 satisfy two equilibrium conditions similar to (3) and (4). First, since

all resources must be used to produce or buy the asset, we haveZ ∞


Z 1

0

min

½
1




¾
 ( )   +  =

Z ∞
0

Z 1

0

 ( )   +  (30)

This defines 
 as a function 

¡

¢
of the price  which is increasing in  for a fixed  and decreasing

in  for a fixed  . Second, the interest rate on loans must equal the return on the asset, and so¡
1 +



¢
 = + +1 (31)

Substituting in 
 = 

¡

¢
implies +1 = 

¡

¢ − . Figure 4 illustrates the effect of increasing 

graphically. Since 
¡

¢
is decreasing in  for a fixed , the curve that plots 


+1 as a function of 


 is

lower for all   0, which implies a higher steady state . Intuitively, increasing  requires the interest

rate on loans to fall so that credit markets clear even after demand for borrowing by poor entrepreneurs

falls. Without risk-shifting, the interest rate on loans and the return on the asset are equal, so the latter

must fall. A lower return on the asset implies a higher price. With risk-shifting, the interest rate on loans

and the return on the asset can differ, so it will be possible for interest rates on loans to fall but the return

on the asset to rise. As an aside, the fact that tighter leverage restrictions only reduce asset prices with

risk-shifting suggests leverage restrictions could be used to detect risk-shifting empirically.

6 Conclusion

This paper analyzes policy in a risk-shifting model of asset prices. As in previous work on risk-shifting,

we show our model can capture many observable features of asset and credit booms and busts. The

general equilibrium framework we use allows us to go beyond this and analyze policy and welfare. We

show that risk-shifting leads to misallocation and excessive leverage, creating a role for intervention. We

then look at whether the leading policy proposals involving contractionary monetary policy and leverage

restrictions can help mitigate these distortions. In our model, tighter monetary policy increases interest

rates and lowers asset prices, which reduces excessive leverage but further inhibits investment that is already

underfunded. Leverage restrictions have the opposite effect, lowering interest rates and, at often increasing

7Even without relying on a more general distribution  ( ), our results are in part due to our assumption that savers

only like to consume when old, and so their saving is inelastic with respect to the interest rate. If we modified this, tighter

leverage constraints that reduce the returns to savings could lead agents to save less and asset prices would fall.
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asset prices. But they also discourage borrowing against assets. Both policies turn out to have ambiguous

welfare implications. Whether a policy improves welfare depends on how it affects speculators vis-a-vis the

productive activities that cross-subsidize them. It will also depend on how policy is implemented; credibly

promising to tighten if a boom persists may improve welfare even when tightening immediately does not.

Although for analytical tractability we analyze each policy separately, a consistent theme of our analysis is

that an effective policy should disproportionately discourages speculation. Which policy is more effective

depends on how policy is implemented, but also on how production and speculation respond to each policy,

which in general requires an empirical answer. Finally, we find that when default costs are large, risk shifting

can occur without giving rise to bubbles, something previous work has overlooked. This reveals that, given

evidence of risk-shifting, policymakers contemplating intervening against asset booms might not need to

determine if asset prices exceed fundamentals to justify their intervention.

We focus on risk shifting because asset booms often feature opaque assets where it is difficult for lenders

to judge the risks from any given borrower. However, a large literature has analyzed bubbles without

risk shifting. These models should not be viewed as competing explanations, since the mechanisms they

consider are complementary to the risk-shifting we study. For example, there is a large literature showing

bubbles can arise with fully rational agents because of dynamic inefficiency as in Galí (2014, 2017) or

binding credit market frictions as in Martin and Ventura (2012), Hirano and Yanagawa (2017), and Miao

and Wang (forthcoming). These models often focus on bubbles that burst stochastically. Since they feature

risk, they can potentially give rise to risk-shifting. Bengui and Phan (2018) already showed how to combine

risk-shifting and dynamic inefficiency. One can similarly combine risk-shifting and borrowing constraints

by replacing our assumption that entrepreneurs have limited capacity with the assumption that their scale

depends on how much they borrow. In that case, the distortions from risk-shifting we emphasize have to be

balanced against the fact that overvalued assets may help relax borrowing constraints. A separate literature

shows how disagreement about the risky returns on assets can give rise to bubbles, e.g. Scheinkman and

Xiong (2003), Hong, Scheinkman, and Xiong (2006), Simsek (2013), and Barberis, Greenwood, Jin, and

Shleifer (2018). Such differences in beliefs are certainly compatible with uncertainty about the risks lenders

are exposed to. For example, we can allow savers in our model to hold different beliefs about the asset.

Whether risk-shifting interacts with disagreement in interesting ways remains an open question.

Our model also suggests directions for future research on risk-shifting models of asset prices. For example,

we assumed lenders suffer a cost Φ when their borrowers default. In practice, the main costs associated

with the collapse of asset prices involve a decline in output due to the way agents respond when asset prices

fall. To get at these channels would require introducing financial intermediaries or borrowing constraints for

individual households. These may have important implications for what type of interventions are best during

booms, since how interventions affect outcomes once asset prices collapse will likely matter for welfare. In

terms of applications, we have described the analog between our setup and the housing market. However,

cross-subsidization in the housing market works differently, since there both types of agents buy the same

asset. By contrast, in our model the safe activity does not involve buying an asset. This raises the question

of whether an intervention that shifts resources from illiquid home buyers to speculators still drives house
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prices up as in our setting. It is also not obvious whether the policy implications we deduce in our model

would hold in open economy settings. For example, we argued that a contractionary monetary policy raises

interest rates and dampens asset prices. But if contractionary monetary policy leads to higher real rates

that attract capital inflows, it is not clear whether asset prices will still fall. Extending our framework to

deal with these issues, for example by considering an open economy version of our model along the lines of

Galí and Monacelli (2005), is essential for figuring out its relevance and limitations for real world scenarios.
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Figure 1: Determination of equilibrium price pd with deterministic dividends 

 

The value ݌ௗ denotes the steady state for the dynamical system ݌௧ାଵ ൌ ߰ሺ݌௧ሻ.  Any path which 

begins away from ݌ௗ leads either to a negative price or a price above e, neither of which can 

occur in equilibrium.  Hence, the unique equilibrium is for the price to equal the steady state 

value ݌ௗ at all dates. 
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Figure 2: Equilibrium prices ݌௧
஽ with delayed dividend increase 

 

The figure depicts the path of dividends and asset prices if dividends in the initial regime begin at d 

and switch to D if the regime remains unchanged through date T.  Up through date T, prices in the 

initial regime follow an explosive path, even as dividends remain unchanged.  From date T on, the 

price would remain constant ݌஽ as long the regime remains unchanged.  The blue arrows indicate the 

change  in prices and dividends  if  the  regime  changes.   A  regime  change permanently  lowers  the 

dividend to d and the asset price to pd.  
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Figure 3: Interest rates as a function of share λ of investment that borrowers pay 

 

The figure depicts the equilibrium schedule of interest rates across different markets.  Interest 

rates are declining in the share ߣ of their projects that borrowers finance.  For ߣ ൏ Λ௧஽ the interest 
rate is falling in ߣ, and for ߣ ൒ Λ௧஽ it is constant. 
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Figure 4: Effect of increasing floor λ with deterministic dividends 

 

The figure depicts the dynamical system ݌௧ାଵ ൌ ߰ሺ݌௧ሻ for two values of ߣ.  The higher value 

represents the curve on the right, and is associated with a higher steady state price. 
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Appendix A: Proof of Proposition 1

Proof of Proposition 1: In the text, we showed there is a unique deterministic equilibrium. Here we allow

for stochastic equilibrium paths for { }∞=0 and confirm that the equilibrium is in fact deterministic.

First, note that for any date , in equilibrium it must be the case that 0   ≤ . If the price  ≤ 0 there
would be infinite demand for the asset given its dividend   0 and there is free disposal. But the supply

of assets is finite, so this cannot be an equilibrium. At the same time, the most any cohort can spend to

buy the assets is . Let  denote the return to buying the asset, i.e.,  ≡ ++1


. This can be random if

+1 is random. Let  () denote the (possibly degenerate) distribution of the return . Since 0   ≤ 

for all , the maximum return max is finite, since max =
+max+1


≤ +


∞, where max+1 is the maximum

possible realization of the price at date + 1.

The equilibrium satisfies two conditions. First, as in (3), all resources will be used either to buy assets

or to initiate production: Z ∞


 ()  +  =  (32)

The implies  =  () where 
0 (·)  0. Second, the interest rate on loans  must satisfy

(1 +)  = + max+1 (33)

If the interest rate on loans 1 +  exceeded
+max+1


, no agent would want to buy assets, which cannot be

an equilibrium. If interest rate on loans 1 +  exceeded
+max+1


, agents could earn positive profits from

borrowing, so demand for credit would be infinite. Substituting  =  () into (33) implies

max+1 = (1 +  ())  − 

Suppose   . Consider the sequence {e}∞= that comprises the upper support of prices at each date
given the history of previous prices, starting from . Formally, set e =  and define

e+1 = (1 +  (e )) e − 

Since   , the sequence e would shoot off to infinity and would exceed  in finite time. This means

there is a state of the world in which the price exceeds , which cannot be an equilibrium. So  ≤ .

Next, suppose   . Again, we can construct the sequence {e}∞= that comprises the upper support
of prices at each date given the history of previous prices, starting from . That is, we set e =  and then

e+1 = (1 +  (e )) e − 

Since   , the sequence e would turn negative. Hence, there is a state of the world in which the price
is negative, which cannot be an equilibrium. The distribution of the price at date  is degenerate with full

support at . From (32),  =  () is uniquely determined as well. ¥
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Appendix B: Monetary Policy

This appendix introduces within-period production, a monetary authority, and nominal price rigidity into

our setup as in our discussion in Section 4. We set up the model and derive the results that underlie

Propositions 4 and 5 in the text.

B.1 Agent Types and Endowments

Our approach largely follows Galí (2014) in how we incorporate production, nominal price rigidity, and

monetary policy into an overlapping generations economy with assets. As in our benchmark model, agents

live two periods and care only about consumption when old. Each cohort still consists of two types — savers

who are endowed with resources but cannot produce intertemporally and entrepreneurs endowed with no

resources who can convert goods at date  into goods at date + 1. We continue to model entrepreneurs as

in the benchmark model, but we now assume savers are endowed with the inputs to produce goods rather

than with the goods themselves. This allows for an endogenous quantity of goods that can potentially vary

with the stance of monetary policy.

More precisely, we assume two types of savers, each of mass 1. Half are workers, endowed with 1 unit of

labor each who must choose how to allocate it. The other half are producers, endowed with the knowledge

of how to convert labor into output but not with labor itself.8 Producers set the price of the goods they

produce and then hire the labor needed to satisfy their demand. Although producers and entrepreneurs

both produce output, they differ in when and how they produce it. Producers born at date  convert labor

into goods at date . Entrepreneurs then convert the goods producers created at date  into goods at date

+ 1. Producers operate within the period; entrepreneurs operate across periods.

B.2 Production, Pricing, and Labor Supply

Workers allocate their one unit of labor to home and market production. Home production yields the same

good as the market, but using a technology  () that is concave in the amount of labor  allocated to home

production. We assume 0 (0) = 1 and 0 (1) = 0 for reasons that will become clear below.

Workers who sell their labor on the market earn a wage  per unit labor. Their labor services are

hired by producers, whom we index by  ∈ [0 1]. Each producer can produce a distinct intermediate good
according to a linear technology. In particular, if producer  hires  units of labor, she will produce

 =  units of intermediate good . The different intermediate goods can then be combined to form final

8This setup borrows from Adam (2003) rather than Galí (2014). The latter assumes agents are homogeneous, selling labor

when young and hiring labor when old. We want income to only accrue to the young as in our benchmark model.
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consumption goods according to a constant elasticity of substitution (CES) production function available

to all agents. That is, given  of each  ∈ [0 1], the amount of final goods  that can be produced is

 =
³R 1

0
1− 

´ 1
1−

(34)

Let  denote the price of the final good and  denote the price of intermediate good . At these prices,

the  that maximize the profits of a final goods producer solve

max




³R 1
0
1− 

´ 1
1− − R 1

0


The first-order condition with respect to  yields

 = 

µ




¶− 1


(35)

If we set  = 1, we can compute the price of the cost of the optimal bundle of intermediate goods

 =
³



´−1
needed to produce one unit of the final good:R 1

0
 =

R 1
0

1− 1



 
1


 

Since any agent can produce final goods, the price  must equal the per unit cost of producing a good in

equilibrium. Equating the two yields the familiar CES price aggregator:

 =
³R 1

0


−1


 
´ 
−1

(36)

Each intermediate goods producer chooses their price  to maximize expected profits given demand (35)

and wage . To allow producers to move either before or after the monetary authority, we condition

producer ’s choice on their information Ω when choosing their price. Each producer will set  to solve

max




"
( −)

µ




¶−1 ¯̄̄̄¯Ω
#

The optimal price is then

 =
 [|Ω]

(1− ) [|Ω] (37)

By symmetry, all producers will charge the same price, produce the same amount, and hire the same amount

of labor, i.e.,  =  for all  ∈ [0 1]. The output of consumption goods is thus

 =
³R 1

0
1− 

´ 1
1−

= 

Workers receive () of these goods and producers get the remaining (1−). Workers also

produce goods at home. Their income is thus () +  (1− ), which is maximized at

0 (1− ) = (38)

By contrast, the total resources available to young agents is  =  +  (1− ), which is maximized at

0 (1− ) = 1

Our assumption that 0 (0) = 1 implies total resources are maximized when  = 0 and all goods are

produced in the market, and  =  +  (1− ) is increasing in  for all  ∈ [0 1].
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B.3 Assets, Credit, and Money

Since agents want to consume when old, they will wish to save their earnings  =  +  (1− ). As in

the benchmark model, they can buy assets and make loans. Without money, this specification would be

equivalent to our benchmark model, the only difference being that the income of savers  which before was

exogenous and fixed is now endogenous and potentially time-varying. Equilibrium in the asset and credit

markets involves the same conditions as in the benchmark model. First, regardless of the income they earn,

the young will spend all of their resources either funding entrepreneurs or buying assets, and so we still haveZ ∞


 ()  +  = 

where  is the real price of the asset and  is the real interest rate on loans. The interest rate  must

still ensure agents cannot earn profits by borrowing and buying assets. When  = , this requires¡
1 +



¢
 = + +1

and when  = , this requires ¡
1 +



¢
 =  + +1

We can then use  and  to solve for the expected return on loans:

 =

(

 if  = 

max
n
 

³
1− 



´

 +




¡
 − Φ

¢o
if  = 

(39)

where  is the expected real return to buying the asset. Below, we show that when prices are flexible or

money is absent altogether, the equilibrium real wage  will be constant over time. Employment 

and total earnings of all savers  =  +  (1− ) will then also be constant. The reduced form of our

model in the absence of money thus coincides with our benchmark model.

To introduce money, we follow Galí (2014) in assuming money does not circulate in equilibrium. That is,

money is the numeraire, and  and  denote the price of goods and labor relative to money. However,

no agent actually holds money in equilibrium. The monetary authority announces a nominal interest rate

 at each date . The monetary authority commits to pay this rate at date  + 1 to those who lend to it

(with money it can always issue), and will charge  to those who borrow from it with full collateral. This

is roughly in line with what central banks do in practice, paying interest on reserves and lending at the

discount window against collateral. To ensure money doesn’t circulate, the real return on lending to the

monetary authority must equal the expected return on savings. Let Π = +1 denote the gross inflation

rate between dates  and + 1. Since agents always lend to entrepreneurs, the expected return on savings

will equal , the expected return on loans. This implies

1 +  =
¡
1 +

¢
Π (40)

When the monetary authority changes the nominal interest rate , either inflation Π or the expected return

1+ or both will have to adjust to ensure agents will neither borrow nor lend to the monetary authority.
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B.4 Defining an Equilibrium

Given a path of nominal interest rates {1 + }∞=0, an equilibrium consists of a path of prices {  }∞=0
and a path of employment {}∞=0 such that agents behave optimally and markets clear. Collecting the
relevant conditions from above yields the following five equations for these five variables:

(i) Optimal pricing:  =
 [|Ω]

(1− ) [|Ω]
(ii) Optimal labor supply: 0 (1− ) =

(iii) Optimal saving:
R∞


 ()  +  = 

(iv) Credit market clearing: 1 + =

⎧⎨⎩
++1


if  = 

++1


if  = 

(v) Money market clearing: Π =
1 + 

1 +

where the expected return on loans  in the last condition is given by (39).

B.5 Equilibrium with Flexible Prices

We begin with the case where producers set their prices  after observing the wage . This corresponds

to the case where prices are fully flexible, or alternatively where there is no money and so no sense in which

nominal prices are set in advance. Producers can deduce what other producers will do and the labor workers

will supply, they can perfectly anticipate total output . Hence, their information set Ω = {}. It
follows that  [|Ω] = and  [|Ω] = . The optimal pricing rule (i) then implies

 =


1− 

The real wage is thus constant and equal to 1− . Substituting this into (ii) yields

0 (1− ) = 1−  (41)

Since  (·) is concave,  is equal to some constant ∗ for all . It follows that  = ∗ +  (1− ∗) is also

constant for all . We can then use (iii) and (iv) to solve for  and  as in the benchmark model, and then

use (39) to compute . Finally, given  we can use the implied Π from (v) to derive {}∞=1 for any
initial value for 0. The initial price level 0 is indeterminate, in line with the Sargent and Wallace (1975)

result on the price level indeterminacy of pure interest rate rules. The nominal wage  = (1− ).

B.6 Equilibria with Rigid Prices

We now turn to the case where producers set the price of their intermediate good  before the monetary

authority moves. That is, producers set prices, the monetary authority sets 1+ , and then producers hire

workers at a nominal wage . This formulation implies prices are only rigid for one period.
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If monetary policy is deterministic, producers can perfectly anticipate the nominal interest rate and the

equilibrium nominal wage , and so Ω = {} and  = 1−  as before.

Next, suppose monetary policy is contingent on some random variable, i.e.,  =  () where {}∞=0 is a
sequence of random variables. For simplicity, consider the case where  is only random at  = 0, i.e.,

0 =

(
 w/prob 

 w/prob 1− 

 is deterministic for  = 1 2 

From date  = 1 on, we know from the optimal price-setting condition (i) that  = 1 − . It then

follows that  = ∗ and  = ∗ ≡ ∗ +  (1− ∗) for all  ≥ 1, and we can determine , , and  for

 ≥ 1 just as in the case where prices are flexible. All we need is to solve for the equilibrium at date 0.

We use a superscript  ∈ {} to denote the value of a variable as for a given realization of 0. Assume
wlog that 0  0 . The optimal price setting condition (1) is now

0

0

0
+ (1− )0


0

0

0 + (1− )0
= 1−  (42)

That is, the output-weighted average real wage over the two values of  is equal to 1 − . Optimal labor

supply (ii) then implies

0
¡
1− 0

¢
= min

n

0

0
 1
o

0
¡
1− 0

¢
= min

n

0

0
 1
o

These are three equations for four unknowns, meaning the set of all equilibria can be parameterized by a

single parameter. Wlog, we choose the real wage when  =  to be this parameter. The three equations

above yield values for 
0 0, 


0 , and 0 given 

0 0. From these, we can deduce earnings 

0 =



0 + 

³
1− 


0

´
for each  ∈ {}. We can then use (iii) and (iv) to derive 0 and 


0 by solvingZ ∞



0

 ()  + 

0 = 


0 (43)³

1 +

0

´


0 =  +  (44)

and then compute the expected return on loans 


0 using (39), and, via (v), the inflation rate Π

0 for each

 ∈ {}. As before, the price level 0 is indeterminate. Optimal pricing only restricts the average
real wage across states but not the real wage for each realization of 0, introducing an indeterminacy. The

equilibrium real wage can exceed 1− for one realization of 0 if it falls below 1− for the other realization.

There case where monetary policy has no effect on real variables at date 0 remains an equilibrium. In this

case, 
0 0 = 

0 0 = 1− . But price rigidity expands the set of equilibria to include ones in which

real variables vary with the nominal interest rate. Since the nominal interest rate only serves as a signal to
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coordinate real activity rather but does not directly affect it, there are equilibria in which
0  

0 as well

as equilibria in which
0  

0 .
9 Since higher nominal interest rates seem to be contractionary in practice,

we focus on equilibria in which 
0 0  1 −   

0 0, i.e., real wages are lower when the monetary

authority unexpectedly raises the nominal interest rate. In this case, from condition (ii) we know that a

higher nominal interest rate will be associated with lower employment (0  ∗  0 ) and hence lower

earnings (0  ∗  0 ). From (43), we can infer that 

0 = 

³


0

´
where  ()   () for the same

value . As is clear from Figure 1, this implies a higher nominal interest rate will be associated with a lower

real asset price (0    0 ). This also implies a higher real interest rate on loans (

0    

0 ).

The real expected return to buying assets will also be higher (0    0 ). However, whether the real

expected return to lending 


0 will be higher is ambiguous. (39) implies 


0 is either equal to 

0 or to a

weighted average of 

0 and 


0. In the latter case, although both terms are higher when  =  the weight

on 

0, which is 


0


0, can be higher or lower for  = . These results are summarized in Proposition 4 in

the paper.

B.7 Promises of Future Intervention

Our last point concerns the effects of a promise at date 0 to be contractionary at date 1 if the boom continues

into that date. In this case, 0 and  for  ≥ 2 are deterministic, while 1 = 1 ∈ {}. That is, we
assume producers set prices each period before  is revealed. Solving for equilibrium at date 1 is identical

to how we solved for the equilibrium at date 0 when we assumed 0 was random. Consider equilibria in

which the real wage is lower if the boom continues, so


1 1  1−    

1 1

This implies 1  ∗  1 and so 1    1. In other words, if dividends fall and the boom ends,

monetary policy must be expansionary. By the same logic as above, such a policy would imply 1  

and 1  , as well as 
1   and 

1  . Turning back to date 0, conditions (iii) and (iv) implyZ ∞
0

 ()  + 0 = ¡
1 +

0

¢
0 =  + 1

Comparative statics of this system with respect to 1 reveals that 0   and 
0  . That is,

while contractionary monetary policy at date 0 dampens 0 but raises 
0 at date 0, a threat to enact

contractionary monetary policy at date 1 if dividends remain high will dampen both 0 and 
0 at date 0.

These results are summarized in Proposition 5 in the paper.

9One way to avoid such multiplicity is to assume dynamic monetary policy rules that are conditioned on past economic

variables. This allows a central bank to take actions that are unsustainable if a high interest rate today leads to certain

outcomes, eliminating equilibria with those outcomes. See Cochrane (2011) for a discussion of these issues.
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Appendix C: Macroprudential Regulation

In this appendix, we define an equilibrium for an economy with multiple markets as in Section 5. We then

show that for an equilibrium in which all markets are active, various aspects of the equilibrium are uniquely

determined. We then discuss some comparative static results with respect to the set of active markets.

C.1 Defining an Equilibrium

We begin with some notation. Let  denote the price of the asset at date . Given asset prices, we can

define the return to buying the asset at date  as

 ≡ +1++1


The return  can be random both because +1 might be uncertain (if  = ) and because +1 might in

principle be stochastic. Let  () denote the (possibly degenerate) cumulative distribution of the return

, i.e.,  () ≡ Pr ( ≤ ). Let 1 + max denote the maximum possible return on the asset. As discussed

in the text, 1 + max is finite, since max ≤ +2
(1−) . We will use  to denote the expected return to buying

the asset at date , i.e.,

1 +  ≡
Z 1+max

0

 ()

We now define variables for the different markets  ∈ [0 1) agents can borrow in. Let  () denote the

interest rate on loans in market , so an agent who agrees to pay a share  of the project she undertakes

will promise to pay back 1 + () for each unit she borrows. Since agents may default, let  () denote

what lenders expect to earn from lending in market  given the possibility of default. Finally, we represent

borrowing in markets with density functions  () and 

 () for all  ∈ [0 1) such that the total amount

of resources borrowed to buy assets and produce are given by
R

 ()  and

R



 () , respectively.

Let  () ≡  () + 

 () denote the density of borrowing for any purpose in market .

Representing the quantities agents borrow in each market as a density function ignores the possibility

that there may be equilibria in which agents borrow a positive mass of resources in certain markets. More

generally, we can allow for a set ∆ ⊂ [0 1) with countably many elements such that each market  ∈ ∆ is

associated with a positive mass of borrowing 
 ()  0. The amount borrowed in any market  ∈ [0 1)\∆

can still be represented with a density function. Heuristically, we can appeal to the Dirac-delta construction

and represent the amount borrowed in any market as if it were a density. That is, for any  ∈ ∆, we set
the density  () = 

 ()  (), where  () is the Dirac-delta function defined so that  () = 0 for

 6= 0 and R 1
0
 ()  = 1. This convention treats markets  ∈ ∆ as essentially having an infinite density.

We will refer to a market  as inactive if  () = 0 and active if  ()  0 or if  ∈ ∆.

Given these preliminaries, we define an equilibrium as a path
©
 


 ()  


 ()   ()   ()

ª∞
=0

that

satisfies conditions (45)-(50) below to ensure that all markets clear when agents are optimizing.
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Our first three conditions stipulate that agents act optimally. We begin with lenders. Optimality requires

that agents will only invest their wealth where the expected return is highest. Let  denote the maximal

expected return to lending in any market , i.e.,

 ≡ sup
∈[01)

 ()

Optimal lending requires that agents lend in market 0 only if it they expect to earn  and if this rate

exceeds the expected return to buying the asset, i.e.,


¡
0
¢
 0 only if 

¡
0
¢
=  and  ≥  (45)

Next, entrepreneurs must act optimally. We first argue this means they should use their endowment to

produce. Recall entrepreneurs have productivity ∗ where ∗  max ≥  from (20), so producing is better

than buying assets. But ∗ must also exceed the expected return to lending . For suppose  were

higher than ∗. Since ∗  max , then  must also exceed max . In that case, no agent would use their

endowment to buy assets, nor would any agent borrow to buy assets given the interest rate on loans in any

active market must be at least . Yet assets must trade in equilibrium: Owners sell their assets whenever

the asset price is positive, while demand for the asset would be infinite if its price were nonnegative. Since

production offers the highest return, entrepreneurs should use their endowment  to produce.

Since entrepreneurs can leverage their endowment to produce at a larger capacity, we also need to char-

acterize their borrowing. If they borrow in market  where   , they can borrow enough to reach full

capacity. Optimality requires that there will be borrowing to produce in market 0 only if some entrepreneur

finds it optimal to borrow in that market from all  ∈ [0 1], including  = 1 for no borrowing. This implies





¡
0
¢
 0 only if 0 ∈ arg max

∈[01]

(
[1 +  − (1− ) (1 + ())] if  ≤ 




[1 +  − (1− ) (1 + ())] if   

)
for some  (46)

Third, agents who borrow to buy assets must act optimally. They will agree to borrow in market  ∈ [0 1)
to buy assets only if doing so yields a higher expected return than lending out the same resources. Define

 () ≡ (1 + ()) (1− )

The expected profits from borrowing in market  to buy one consumption unit’s worth of assets isZ ∞
()

( −  ())  () (47)

Agents will borrow in market  to buy assets only if (47) equal
¡
1 +

¢
, the return on what they must

spend on assets. If (47) were lower than
¡
1 +

¢
, no agent would borrow to buy assets. If (47) were

higher than
¡
1 +

¢
, then no one would ever lend given they can borrow in market 0, and so 

¡
0
¢
= 0.

But this contradicts the fact that  ()  0. Optimality implies


¡
0
¢
 0 only if

Z ∞
(

0)

¡
 − 

¡
0
¢¢
 () =

¡
1 +

¢
0 (48)
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Fourth, savers will not waste any resources. Since entrepreneurs use their endowment to produce, all

the resources spent to buy the asset must come from savers. This implies that  must be either lent to

entrepreneurs to produce or be spent on assets:Z 1

0



 () +  =  (49)

Finally, we turn to equilibrium beliefs. In any active market 0, lenders must expect the return on lending



¡
0
¢
to conform with the actual fraction of borrowers who borrow in market 0 with the intent to produce

and to buy assets, respectively. That is,



¡
0
¢
=





¡
0
¢


¡
0
¢

¡
0
¢
+


¡
0
¢


¡
0
¢ max

½


¡
0
¢

+1 + +1


− 1
¾
if 

¡
0
¢
 0 (50)

In a market  ∈ ∆ with a positive mass of borrowing, the expression
 (

0)
(

0) will be replaced by

 ()

()
.

Condition (50) does not impose any restrictions on expectations in inactive markets where 
¡
0
¢
= 0.

C.2 Solving for Equilibrium

We now proceed to solve for an equilibrium. As in the text, we restrict attention to equilibria in which all

markets  ∈ [0 1) are active. Such equilibria are natural given we focus on the effects of interventions to
shut down markets. Our first result characterizes the schedule of interest rates in such an equilibrium.

Proposition C1: In an equilibrium where all markets are active, there exists a value Λ ∈ [0 1] such
that the equilibrium interest rate schedule will be given by

1 + () =

( ()
1− if  ∈ [0Λ)
1 + if  ∈ [Λ 1)

(51)

where e () is the value of  that solvesZ 1+max

=

( − )  () =
¡
1 +

¢
 (52)

The schedule of interest rates  () is a decreasing and continuous function of  for  ∈ [0Λ].

Proof of Proposition C1: Our proof relies proceeds as two lemmas.

Lemma C1: In an equilibrium where all markets are active, 1 +  () = max
n()
1−  1 +

o
, wheree () equals the  that solves (52) and  is the expected return to lending in any market .

Proof of Lemma C1: Recall we defined  () ≡ (1 + ()) (1− ) as the equilibrium debt obligation

for an agent who invests one unit of resources in assets. As we argued above, for all  we haveZ 1+max

=()

( −  ())  () ≤
¡
1 +

¢
 (53)

42



since otherwise agents would refuse to lend, which is incompatible with  ()  0 for all  ∈ [0 1). The
expression

R 1+max

=
( − )  () is strictly decreasing in . It also tends to +∞ as  → −∞ and to 0 as

→ 1+ max . Hence, for any  ∈ [0 1) and any  ≥ 0, there exists a unique  ∈ (−∞ 1+ max ] for whichZ 1+max

=

( − )  () =
¡
1 +

¢
 (54)

Denote e () as the unique solution to equation (54). By contrast,  () refers to the value of (1 + ()) (1− )

evaluated at the equilibrium interest rate  ().

For any 0 ∈ [0 1) in which (53) holds with equality, we have e ¡0¢ = 
¡
0
¢
and so

1 +

¡
0
¢
=
e ¡0¢
1− 0

For any remaining values of 0 ∈ [0 1), condition (53) holds as a strict inequality. This means borrowing
in market 0 and buying assets yields a lower payoff than lending out the resources needed to borrow in

market 0. Hence, no agent will borrow in market 0 to buy assets, implying 
¡
0
¢
= 0. In an equilibrium

where all markets are active, 



¡
0
¢
 0. From (45) we know that 

¡
0
¢
= , and from (50) we know

that since 
¡
0
¢
= 0 then 

¡
0
¢
= 

¡
0
¢
. Combining these implies 

¡
0
¢
= .

Hence, in an equilibrium where all markets are active, we must have either  () =  or  () =
()
1−

for all  ∈ [0 1). To further show that 1 +  () = max
n
1 +

()
1−

o
, consider a value of  for which

()
1−  1 +, i.e., for which e ()   (). Since

R 1+max

=
( − )  () is decreasing in , this meansZ 1+max

=()

( −  ())  () 

Z 1+max

=() ( − e ())  () =
¡
1 +

¢


Since in equilibrium we must satisfy (53), it follows that in this case we have 1 + () =
()
1− .

Next, consider a value of  for which
()
1−  1 +, i.e., for which e ()   (). Then we would have

¡
1 +

¢
 =

Z 1+max

=() ( − e ())  () 

Z 1+max

=()

( −  ())  ()

In this case, (53) can only hold as a strict inequality. But we already know that in this case  () = .

This establishes the lemma. ¥

Our next lemma establishes that
()
1− is a weakly decreasing and continuous function of . Combined

with Lemma C1, this implies there exists a cutoff Λ such that  () =  for  ≥ Λ.

Lemma C2: In any equilibrium where all markets are active,
()
1− is nonincreasing and continuous in .

Proof of Lemma C2: The function e () corresponds to the value of  which solves (52). Although
the distribution  () can contain mass points, the integral

R 1+max

=
( − )  () is still continuous in .
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This implies e () is a continuous function of . However, e () may exhibit kinks, meaning its directional
derivatives need not be equal at all values. To show that e () is decreasing, it will suffice to show that all
of its directional derivatives are nonpositive for all  ∈ [0 1). Totally differentiating (52) implies

e ()


= − 1 +R 1+max()  ()

For any  where e () is a mass point of  (), lim0→+
R 1+max(0)  () 6= lim0→−

R 1+max(0)  ().

Nevertheless, both lim0→+
(0)
0 and lim0→−

(0)
0 are negative, so e () is strictly decreasing in .

Next, define e () ≡ ()
1− − 1. The function e () is also continuous in  with possible kink-points.

Differentiating the equation e () = (1− ) (1 + e ()) implies

e ()


= −(1 + e ()) + (1− )
 e ()



Rearranging and using the expression for
()


above yields

 e ()


=

1

1− 

∙
1 + e () +

e ()


¸

=
1

1− 

⎡⎣1 + e ()− 1 +R 1+max()  ()

⎤⎦
=

1

(1− )
R 1+max()  ()

"
(1 + e ())

Z 1+max

()  ()−
¡
1 +

¢#
(55)

Once again,
 ()


is discontinuous at  where e () is a mass point of  ().

To evaluate the sign of
()


, we must consider two cases. First, suppose e ()  . Then

(1 + e ())

Z 1+max

()  () 
¡
1 +

¢ Z 1+max

()  ()

≤ 1 +

In that case, we have
()


 0 from (55) regardless of the direction we take the derivative. Next, supposee () ≥ . From Lemma C1, in this case (53) holds with equality. Rearranging this equation, we getZ 1+max

()
h
 −

³
1 + e ()

´i
 () = 

"¡
1 +

¢− Z 1+max

()
³
1 + e ()

´
 ()

#

We can establish that
 ()


in (55) is nonnegative for   0 if we can show thatZ 1+max

()
h
 −

³
1 + e ()

´i
 () ≥ 0
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Towards this, observe that the expected profits from borrowing in market  to buy assets are given byZ 1+max

() (1− ) ( − (1 +))  () +

Z 1+max

()  ()

Since these are equal to
¡
1 +

¢
 when e () ≥ , we have

¡
1 +

¢
 =

Z 1+max

() (1− ) ( − (1 +))  () +

Z 1+max

()  ()

≤
Z 1+max

() (1− ) ( − (1 +))  () +

Z 1+max

0

 ()

=

Z 1+max

() (1− ) ( − (1 +))  () +
¡
1 + 

¢
 (56)

But in an equilibrium where all markets are active, we must have 


 ≥  . This implies

0 ≤ ¡ − 
¢
 ≤ (1− )

Z 1+max

() ( − (1 +))  ()

This confirms
R 1+max() ( − (1 +))  () ≥ 0. All directional derivatives  ()


are nonnegative. ¥

From Lemmas C1 and C2, set Λ to be either 1 or the minimum value in [0 1] for which  () = . It

follows that  ()   for   Λ and  () =  for all  ≥ Λ. This establishes the proposition. ¥

We can use the schedule of interest rates in Proposition C1 to determine how much entrepreneurs should

produce and in which markets to borrow if they do.

Proposition C2: In an equilibrium where all markets are active, entrepreneurs with wealth  will borrow

1−  units to produce, in a market with an interest rate equal to  ().

Proof of Proposition C2: Consider an entrepreneur with wealth . If she borrows in a market  where

 ≤ , she can produce at full capacity and would only need to put down 
³
1−
1−

´
resources to borrow

1−  to reach full capacity. This would earn her an expected profit of

1 + ∗ − (1 + ()) (1− )

This value is maximized by choosing  to minimize  (). From Proposition C1, we know  () is weakly

decreasing in  and is therefore maximized at  = .

Next, suppose she borrows in a market  where   . In that case, she could not produce at full

capacity. Since ∗  max =  (0) ≥  () for all  ∈ [0 1), it will be optimal to borrow enough to

produce at the maximal capacity possible. For   , this maximum is 

. Her profits would thus equal




(1 + ∗ −  ()) (57)
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where recall  () = (1− ) (1 + ()) is the amount a borrower is required to repay per each unit of

resource she borrows. Since  () =  for all  ∈ (Λ 1), there would be no benefit to going to market
  Λ: She would have to produce less at the same interest rate as in market Λ. The only case that

remains is the interval of markets  ∈ [Λ]. In that case, we can differentiate profits in (57) to get




³

(1 + ∗ −  ())

´
= − 

2

∙
(1 + ∗ −  ()) + 

 ()



¸
= − 

2

"
(1 + ∗ −  ())− 

¡
1 +

¢R 1+max


 ()

#

= − 

2
R 1+max


 ()

"Z 1+max



(1 + ∗ −  ())  ()− 
¡
1 +

¢#
Since ∗  +2

(1−)  max , we have





³

(1 + ∗ −  ())

´
 − 

2
R 1+max


 ()

"Z 1+max



( −  ())  ()− 
¡
1 +

¢#
But for  ≤ Λ, the expression in brackets is equal to 0. Hence, borrowing in a market with    will

be strictly dominated by borrowing in the market with  = . At the optimum, each entrepreneur borrow

1−  at a rate of  (). ¥

Proposition C3: In an equilibrium where all markets are active, the equilibrium price of the asset will

be given by  = (1− ) 

Proof of Proposition C3: Condition (49) implies that all the resources of the young in cohort  will be

used to either produce or to buy assets. From Proposition C2, we know that all entrepreneurs will produce

at capacity, so the total amount used to produce is given byZ 1

0

(2)  = 2

This implies

 + 2 = (1 + ) 

and so  = (1− )  as claimed. ¥

Propositions C1-C3 do not require any restrictions on the distribution of . When  = , the return

on the asset 1 +  will have a degenerate distribution with full mass at


(1−) . Substituting this into

(52) reveals that e () = (1− )
³
1 + 

(1−)
´
for all , that

 ()


= 0 for all , and the cutoff Λ = 0.

Hence, when all markets are active,  () =  =


(1−) for all  ∈ [0 1) as described in the text. One
equilibrium in which all markets are active if it entrepreneurs with wealth  borrow in market  = . But

other equilibria in which all markets are active also exist.

When dividends follow a regime-switching process, then if  =  at date ,  would be distributed as

 =

(


(1−) w/prob 1− 


(1−) w/prob 
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We can verify that this distribution implies that
()


 0 when  ≤ Λ . In particular, observe that (56) in

Lemma C2 relies on the fact that
R 1+max()  () ≤

R 1+max

0
 (). But for the above distribution, the

first expression is equal to (1− )
³
1 + 

(1−)
´
, which is strictly less than 1+

(1−)+
(1−) which corresponds

to the second expression. Hence, we can replace (56) with a strictly inequality, implying
()


is strictly

negative for  ≤ Λ . This is in line with what we discuss in the text and depict in Figure 3.

Since Λ is the minimum value of  at which
()
1− = 1 +



 , we have

1
1−Λ

h
1 + 

(1−) −
³
1 +





´
Λ
1−

i
= 1 +





which, upon rearranging, yields

Λ =
1−



1+





 ³ 
(1−) −





´
Since 

 () is decreasing in  for  ∈ [0Λ ), Proposition C2 implies only borrowers with wealth  borrow
in market  =  for  ∈ [0Λ ). Hence,  () = 2 for  ∈ [0Λ ). By contrast,  () is indeterminate
for  ∈ [Λ  1). However, we know that 


 (Λ)  0, since borrowers with wealth  = Λ will have to

borrow in this market to borrow 1− . As for the amount borrowed to buy assets,  (), we can deduce

 () for  ∈ [0Λ ] from 
 (), 



 , and 

 () using (50). For   Λ , the fact that

 ()


 0 at

 = Λ , combined with the fact that
 ()


 0 for   Λ from Lemma C2, implies that no agent would

want to borrow to buy assets. So  () = 0 for all  ≥ Λ . We can solve for 


 as in the text.

C.3 Comparative Statics

Next, we consider equilibria where all markets above some floor  are active. These results correspond to

Propositions 8 and 9 in the text. The first result concerns how the equilibrium changes with .

Proof of Proposition 8: In the text, we show that  and  are increasing and decreasing in ,

respectively. Here, we show that 

is decreasing in . For any , either 


equals  or exceeds .

Since the expected return on loans 

is continuous in , it will suffice to show that 


is decreasing in 

when 

 .

When 

 , we have  = 1, and the equilibrium conditions for  and Λ are given by

(1− Λ)
=

h


(1−(1−)) − Λ
³
1+



1− − 1
´i

(58)

1 +


= (1−  (1− ))
£
1 +  − Φ

¤
+

2

Z 1

0

h
min

n


 1
o
− 

i £
1 + (max {})¤  (59)

If 

 , the floor  must be below the cutoff Λ For suppose  ≥ Λ. Then all markets where agents

might default will be shut down. But without default, the expected return on lending and the expected
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return on the asset must be equal to ensure both the credit market and asset market clear. Since   Λ,

we can expand the integral term in (59) to obtainZ 1

0

h
min

n


 1
o
− 

i £
1 + (max { })¤ = (1 + ())

µ
1


− 1
¶Z 

0

 +Z Λ


(1 + ()) (1− )  +
³
1 +


´Z 1

Λ
(1− ) 

We use the fact that 1+ () = 1
1−

∙
1 + 

(1−(1−)) −


1+






1−

¸
to express the three integrals above as

(1 + ())

µ
1


− 1
¶Z 

0

 =
h
1 + 

(1−(1−)) − 
³
1+



1− − 1
´i 
2

(60)Z Λ


(1 + ()) (1− )  =

Z Λ


∙
1 + 

(1−(1−)) −


1+






1−

¸
 (61)

³
1 +


´Z 1

Λ
(1− )  =

1

2

³
1 +


´ ¡
1− Λ¢2 (62)

We can write (58) and (59) more compactly as

1

³


Λ

´
= 0

2

³


Λ

´
= 0

Totally differentiating this system of equations gives us the comparative statics of the equilibrium 

and

Λ with respect to any variable  as"
1




1
Λ

2




2
Λ

#"





Λ

#
=

"
−1



−2


#
Differentiating (58) and (59) using expressions (60)-(62) yields

1


 = 1− Λ + Λ

1−
1
Λ

=
(1+


)

1−
2
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When we evaluate comparative statics with respect to , we now have"
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Since 

is decreasing in  whether 


  or 


= , the claim follows. ¥

Proposition 9 concerns how changing  affects the expected costs of default Φ. Since we already

know  is increasing in , any changes in expected default costs occur entirely through . Our next

result argues that there exists cutoffs Λ0 and Λ1 such that 
 = 0 when   Λ0 or   Λ1. When

Λ0    Λ1, we only claim it must be decreasing for some  in this interval.

Proof of Proposition 9: Define

 () =



(1− (1− ))

Using the fact that 



 0, we have

 ()


=



−  ()

1− (1− )
 0

Since



 = [(1− ) + ]  ()

it follows that the ratio 

 is decreasing in . Hence, there exists a value Λ0 ≥ 0 such that 

 

for   Λ0 and 

=  for  ≥ Λ0. Since 

  when   Λ0, then 
 = 1 for   Λ0. It follows that

expected default costs Φ = Φ are increasing in  in this region. A higher  for   Λ0 reduces

the amount entrepreneurs produce and increases the foregone output when dividends fall. Each cohort will

therefore be left with fewer goods to consume.

We next turn to the case where  ≥ Λ0. Here, we know 

= . Substituting this into (58) yields¡

1− Λ¢ ¡1 + 
¢
=
h
1 + 

(1−(1−)) − Λ

1−
¡
1 + 

¢i
which, upon rearranging,

Λ =
(1−)(−)

(1−(1−))+(1−)+

From this, we can conclude that Λ ≥  if

(1−)(−)
(1−(1−))+(1−)+ ≥ 

or, upon rearranging, if

(1− ) ( − ) ≥  [(1− (1− )) + (1− ) + ] (63)

The RHS of (63) is a quadratic in  with a positive coefficient on the quadratic term. The inequality is

satisfied when  = 0 and violated when  = 1. This implies there exists a cutoff Λ1 ∈ (0 1) such that
Λ   if  ∈ [0Λ1) and Λ   if  ∈ (Λ1 1). We can deduce that Λ1 ≥ Λ0 since by definition Λ0 is the
cutoff such that 


=  when  ≥ Λ0, yet at  = Λ1 we have



= 

¡
Λ
¢
=  () =  (Λ1)
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By construction, we know that  () when  = Λ1 is equal to 
. This implies Λ1 ≥ Λ0.

When   Λ1 no agent will borrow to buy the asset, so 
 = 0. Expected default costs are 0, and so the

only effect of increasing  is to reduce production. This will leave fewer goods for each cohort to consume.

Finally, we turn to the case where Λ0    Λ1. We do not analyze this case in general. However, when

Λ = , the interest rate in all active markets would equal 

, since the only active markets are those

with  ≥  = Λ. Since  ≥ Λ0, we know that 
=  and so the interest rate in all active markets is

. The equilibrium condition that determines  is given by

¡
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= 1 +  −  (1− (1− ))Φ

Hence, when  = Λ1, we have 
 = 0. For   Λ1, however, 

  0, sinceZ 1

0

£
1 + (max {})¤ hminn


 1
o
− 

i
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will be strictly greater than 1
2

¡
1 + 

¢
(1− ). Hence, in the limit as  ↑ Λ1, we have   0 expected

default costs Φ must be decreasing in  since this expression goes from a positive value to 0.

Finally, to show that this can generate a Pareto improvement, observe that increasing  while dividends

are high will make the initial old at date 0 better off given 0 increases. Cohorts born after dividends

have fallen will be unaffected if  is only increased while dividends are high. Cohorts who are born while

dividends are high expect to consume the dividends from the asset net of default costs  [+1]−Φ
as well as the output produced by entrepreneurs. If Φ is sufficiently large and  is small, we can promise

these agents a higher expected consumption. ¥
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