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Abstract

In this paper, we provide an axiomatic foundation for the value-based version of the Drift
Di¤usion Model (DDM) of Ratcli¤ (1978), a successful model that describes two-alternative
speeded decisions between (fast-moving) consumer goods.
Our axioms present a test for model misspeci�cation and connect the externally observable

properties of choice with an established neurophysiological account of how choice is internally
implemented.
We then extend our axiomatic analysis to multi-alternative choice under time pressure.

A successful model to describe two-alternative speeded decisions between (fast-moving) con-
sumer goods is the value-based version of the Drift Di¤usion Model (DDM) of Ratcli¤ [41] proposed
by Milosavljevic et al. [34] and neurophysiologically motivated by Shadlen and Shohamy [51] in
terms of sequential sampling from memory. Here we provide an axiomatic foundation for this
model and a simple way to elicit its parameters from behavioral data.
When eye-tracking data are also available, our characterization allows to test the Metropolis-

DDM algorithm, a recent multi-alternative extension of the DDM due to Cerreia-Vioglio et al.
[6], and to identify its parameters.
The DDM is by now a paradigm for choice between pairs fa; bg of alternatives. It explains

a wide range of behavioral and neuroscienti�c data, it has a compelling neurophysiological inter-
pretation, and it is optimal in terms of sequential sampling.1 Recently, it has also been shown to
successfully describe a wide range of purchasing decisions (from snacks to consumer electronics,
to household items).2 This neuro-computational algorithm assumes that decisions are made by
accumulating noisy information about the two alternatives, a and b, over time until the net evi-
dence in favor of one exceeds a prespeci�ed threshold, say �, at which time the favored alternative
is selected. The presence of noise in the accumulation of information implies that choice between
the same pair of alternatives does not always terminate at the same time and does not always lead
to the same outcome. More formally, the DDM describes how linear evidence accumulation with
white Gaussian noise generates the random variables decision time, DTa;b, and decision outcome,
DOa;b, for choice in a two-alternative set fa; bg.

1See, e.g., Bogacz et al. [2], Hare et al. [19], Ratcli¤ et al. [42] and [43], and Fudenberg et al. [16].
2See, e.g., Roe et al. [48], Milosavljevic et al. [34], Krajbich et al. [24], and Clithero [8].
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Moreover, the DDM naturally captures speed-accuracy tradeo¤s: lower thresholds � produce
faster but less accurate responses, whereas higher thresholds � produce more accurate but slower
responses. This feature is particularly relevant for choice under time pressure: empirical evidence
con�rms the intuition that higher pressure induces lower thresholds.3

Our main contribution is providing necessary and su¢ cient conditions on the observables �
that is, on choice frequencies and decision times � that guarantee that the agent behaves �as
if� implementing the DDM. In the tradition of psychophysics, these conditions are called �ax-
ioms� and can be seen both as an empirical test of the model and as a measurement tool for
its parameters.4 The twist of our approach is combining the choice frequency and decision time
components into an axiomatic characterization. Both these observables are at the heart of most
psychophysical theories (see, e.g., Luce [26] and [27]). Yet, while the former has been studied in
great axiomatic detail under the name of �random choice�, the latter has not been analyzed from
this perspective, with the exception of the recent Echenique and Saito [11]. We also extend our
results to the popular variation of the DDM of Wagenmakers et al. [55], called EZ-DDM, that
allows to incorporate the non-deliberative part of response times.
Beyond falsi�ability of the DDM theory and a better understanding of its behavioral impli-

cations, an important experimental advantage of our main representation theorem is that it does
not require a parameter �tting routine, but allows to elicit the agent�s utility function and de-
cision threshold directly from behavioral data. Also, our framework can be immediately applied
to common experimental setups in which each participant contributes only a moderate amount
of data and the error rate is low �see Wagenmakers et al. [55], Lerche and Voss [25], and van
Ravenzwaaij et al. [44].
Last but not least, our axiomatization extends beyond two-alternative choice modelling. In-

deed, we show that it permits to test and to elicit the parameters of the multi-alternative choice
procedure under time pressure of Cerreia-Vioglio et al. [6]. In so doing, we also generalize their
Metropolis-DDM algorithm to allow for the formation of consideration sets. Because of the impor-
tance of these sets in economics and marketing,5 this generalization is another salient contribution
of the present paper.

3See, e.g., Milosavljevic et al. [34], Karsilar et al. [21], and the discussion in Ortega and Stocker [38].
4Classical references are Luce [26] and Luce and Suppes [28].
5See, e.g., Shocker et al. [52], Roberts and Nedungadi [47], Peter and Olson [39], Eliaz and Spiegler [12],

Masatlioglu et al. [32], Hauser [20], Manzini and Mariotti [31], and Gaynor et al. [17].
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More about the related literature The literature on the DDM is vast but non-axiomatic. We
refer readers to the reviews of Fehr and Rangel [15] and Ratcli¤ et al. [43]. Webb [56] studies the
relation between the DDM (and bounded accumulation models, in general) and random utility
models. The optimality of the DDM in terms of sequential sampling is analyzed by Gold and
Shadlen [18] and Bogacz et al. [2] in the classical case, and by Fudenberg et al. [16] and Epstein
and Ji [13] in the Bayesian case.
The extension of the DDM to menus of N > 2 alternatives is a non-trivial issue and di¤erent

generalizations, with signi�cantly di¤erent behavioral and neurobiological properties, have been
proposed. See, e.g., Roe et al. [48], Usher and McClelland [53], Anderson et al. [1], McMillen and
Holmes [33], Bogacz et al. [3], Ditterich [9], Krajbich and Rangel [23], and Reutskaja et al. [45]. In
most of these models, the choice task is assumed to simultaneously activate N accumulators,
each of which is primarily sensitive to one of the alternatives and integrates evidence relative to
that alternative. Choices are then made based on absolute or relative evidence levels. In contrast,
the Metropolis-DDM algorithm of Cerreia-Vioglio et al. [6] builds on sequential activation of
2 accumulators and Markovian exploration of the menu of alternatives. This feature makes
the Metropolis-DDM algorithm more realistic in view of both the available eye-tracking evidence
�see, e.g., Russo and Rosen [50] and Russo and Leclerc [49] �and of the known limitations of
working memory �see, e.g., Luck and Vogel [29] and Vogel and Machizawa [54]. The same feature
allows for model-testing and permits parameters�elicitation by analyzing binary comparisons only.
These comparisons are the most studied in many �elds of decision theory and their quantitative
and experimental analysis is consequently well developed.

1 The DDM for value-based decisions

Let A be a choice set consisting of at least three distinct alternatives. The DDM is a model of
binary comparison between pairs of alternatives a and b in A. According to this model, noisy
evidence about the alternatives is accumulated until it reaches some threshold � > 0, at which
point a decision is taken. Speci�cally, either alternative is selected as soon as the net evidence in
its favor attains level �. In a neurophysiological perspective, the comparison of a and b is assumed
to activate two neuronal populations whose activities (�ring rates) provide evidence for the two
alternatives. Denote their mean activities by u (a) and u (b), and assume that each experiences
instantaneous independent white noise �uctuations modeled by uncorrelated Wiener processes
Wa and Wb. Evidence accumulation in favor of a and b is then represented by the two Brownian
motions with drift Va (t) � u (a) t+�Wa (t) and Vb (t) � u (b) t+�Wb (t), respectively.6 With this,

� the net evidence in favor of a against b is given, at each t 2 (0;1), by the di¤erence

Za;b (t) � Va (t)� Vb (t) = [u (a)� u (b)] t+ �
p
2W (t)

where W is the Wiener process (Wa �Wb) =
p
2;

� the comparison ends when Za;b (t) reaches either the barrier � or ��; so, the decision time
is the random variable

DTa;b � min ft : Za;b (t) = � or Za;b (t) = ��g
6See, e.g., Bogacz et al. [2] and Fudenberg et al. [16].
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� when the comparison ends (at random time DTa;b), the agent selects a if the upper barrier
� has been reached, and selects b otherwise (if the lower barrier �� has been reached); so,
the decision outcome is the random variable

DOa;b �
(
a if Za;b (DTa;b) = �

b if Za;b (DTa;b) = ��

The probability of choosing a from fa; bg is thus

Pa;b � P [DOa;b = a]

and its explicit logistic formula

Pa;b =
1

1 + e�
�
�2
[u(a)�u(b)]

(1)

can be already found in Ratcli¤ [41]. In particular, the choice of an inferior alternative, a if
u (a) � u (b) or b if u (b) � u (a), is called an error. Its probability is the error rate

ERa;b � min fPa;b; Pb;ag =
1

1 + e
�
�2
ju(a)�u(b)j

The explicit formulas of the distribution of DTa;b and of its moments are also well known (see the
appendix). For example, its mean is

MDTa;b � E [DTa;b] =
�

u (a)� u (b) tanh
� [u (a)� u (b)]

2�2
(2)

As intuitive, the latter increases with the amount of net evidence required to decide, as well as
with the payo¤ proximity of the alternatives.7

Normalizations Notice that the parameters u, �, and � are de�ned up to a positive scalar
multiple. If all of them are multiplied by a constant � > 0, the predictions of the DDM are
unchanged. For instance, choosing � = 1=� amounts to normalize the noise � of the Brownian
motions fVaga2A and to replace � with 1, u with û = u=�, and � with �̂ = �=�.8
A di¤erent normalization, typical of the mathematical psychology literature, consists in setting

� = 1. It obviously corresponds to � = 1=�.
Finally, observe that u is actually cardinally unique, that is, de�ned up to positive scalar mul-

tiplication as well as to translation by an additive constant. For instance, in a neurophysiological
perspective, it may be desirable to normalize the range of u to [0; 100]. This requires u to be
bounded (and nonconstant) and leads to the transformation

u 7! 100

supa2A u (a)� infa2A u (a)

�
u� inf

a2A
u (a)

�
= �

�
u� inf

a2A
u (a)

�
7In some cases the alternatives a and b may play di¤erent roles, say b is the status quo or the incumbent solution

of a decision problem. The amount of net evidence required to maintain b, call it �, may then be di¤erent from
the amount of net evidence � required to switch to a. In these cases, it is necessary to replace �� with �� in the
expressions of DTa;b and DOa;b, and expressions (1) and (2) should be modi�ed accordingly. Our multi-alternative
generalization of the DDM can be extended to these cases. See the appendix.

8This is the normalization that we will adopt, when we do not maintain the generic expression. Another nor-
malization of the noise coe¢ cient, popular in behavioral experiments, corresponds to �

p
2 = 0:1 and it determines

a choice of � =
p
2=20�.
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2 Observability and measurement

In terms of external observability of the DDM, assume that the analyst can observe the agent�s
choices between a and b several times. These observations produce an empirical choice frequency
P oa;b = 1 � P ob;a and an empirical mean decision time MDToa;b = MDTob;a. Formally, we call
observables any pair of square matrices

(P o;MDTo) =
��
P oa;b;MDT

o
a;b

�
: P oa;b + P

o
b;a = 1 and MDT

o
a;b = MDT

o
b;a for all a 6= b

	
Example 1 With three alternatives, the matrices are24 � P oa;b P oa;c

P ob;a � P ob;c
P oc;a P oc;b �

35 and

24 � MDToa;b MDToa;c
MDTob;a � MDTob;c
MDToc;a MDToc;b �

35
The elements on the diagonal, which are conceptually meaningless, can be arbitrarily speci�ed.

Here the superscript �o� stands for �observable� (or �observed�). For instance, ERoa;b �
min

�
P oa;b; P

o
b;a

	
is the observed (experimental) error rate, while ERa;b � min fPa;b; Pb;ag is the

DDM (theoretical) error rate.
Next we show that the DDM is characterized by simple veri�able conditions on observables

that we state as axioms. They are required to hold for all distinct a; b; c 2 A.

Axiom 1 (Positivity) P oa;b > 0 and MDT
o
a;b > 0.

This axiom requires that choice be a genuinely stochastic and time consuming process. It dates
back to Luce [26].

Axiom 2 (Product rule) P oa;bP
o
b;cP

o
c;a = P

o
a;cP

o
c;bP

o
b;a.

The product rule asserts that choice cycles

a! c! b! a and a! b! c! a

must be observed with the same probability. In other words, violations of transitivity are only
due to noise (mistakes). Luce and Suppes [28, p. 341] show that, together with positivity, this
axiom characterizes the Luce model of binary choice.9 In turn, via the relation

P oa;b � F (v (a)� v (b))

this model allows to elicit, from the observable choice frequency P oa;b, two unobservable objects
of interest for the psychometric analyst: a Fechnerian value v, used to measure the di¤erence in
�nal intensity of �subjective sensations�generated by the stimuli a and b, and a discrimination
function F , which describes how this di¤erence a¤ects discrimination. Speci�cally, in the model
of Luce the discrimination function is logistic

F (s) =
1

1 + e�s
8s 2 R

9See Luce [26, Ch. 1-2]. This axiom is often expressed in terms of odds (it coincides with axiom EZ2 of the
next section).
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and the di¤erence v (a)� v (b) can be retrieved by inverting F ; so that

v (a)� v (b) = logitP oa;b = log
P oa;b

1� P oa;b
8a; b 2 A

is given by the logarithm of the observed odds for a against b.10

As a consequence, the error rate is

ERoa;b =
1

1 + ejv(a)�v(b)j
8a; b 2 A

and the absolute intensity di¤erence jv (a)� v (b)j, representing the ease of comparison,11 is given
by the log-odds of a correct response

jv (a)� v (b)j = logit
�
1� ERoa;b

�
= log

1� ERoa;b
ERoa;b

All these considerations are made clear by a plot of the discrimination function F

We are now ready to state our �nal axiom.

Axiom 3 (Invariance) MDToa;b
logit

�
1� ERoa;b

�
1=2� ERoa;b

= MDToa;c
logit

�
1� ERoa;c

�
1=2� ERoa;c

:

To interpret, observe that ERoa;b always ranges in [0; 1=2], so 1=2�ERoa;b measures the accuracy
of comparison, and that the invariance axiom requires the existence of a constant � > 0 for which

MDToa;b = ��
1=2� ERoa;b

logit
�
1� ERoa;b

� 8a; b 2 A

In words, this formula thus says that �mean decision time is proportional to the desired accuracy
and inversely proportional to ease of comparison�.
The next theorem, our �rst main contribution, shows that observables can be explained by the

DDM if and only if they satisfy the previous axioms.

10As detailed in (4), the odds of an event are the ratio of the probability of the event itself to the probability of
its complement. Note that, when we write �8a; b 2 A�we intend �for all distinct a and b in A�.
11Indeed, the higher this absolute value, the easier the discrimination between a and b (see also Fudenberg et al.

[16]).
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Theorem 1 Let (P o;MDTo) be the observables. The following are equivalent:

(i) P o and MDTo satisfy positivity, the product rule, and invariance;

(ii) there exist a function u : A ! R and two coe¢ cients � > 0 and � > 0 such that P o = P
and MDTo = MDT.

In this case, �̂ = �=� is unique and û = u=� is unique up to an additive constant. In particular,

�̂ =

s
MDToa;b

logit
�
1� ERoa;b

�
1� 2ERoa;b

and û (a)� û (b) =
logitP oa;b

�̂
(3)

for all a 6= b in A.

This theorem has several noteworthy consequences. First, the identi�cation of �̂ and û allows
for inter-agent and intra-agent comparative statics. For instance, it permits to say that agent 1 is
�more re�ective�than agent 2 if and only if �̂1 > �̂2,12 or to say that agent 1 is �more risk averse�
than agent 2 if and only if the certainty equivalents corresponding to û1 are smaller than those
corresponding to û2.13

Second, this theorem guarantees that the function u is cardinally unique and that, given u, the
coe¢ cients � and � are both unique. Speci�cally, if instead of u we consider �u + �, with � > 0
and � 2 R, the di¤usion coe¢ cient � and the threshold � must be both multiplied by � itself.14
Finally, Theorem 1 shows that utility di¤erences are cardinally measured jointly by choice

probabilities and decision times. In this regard, the next proposition shows that alone either
choice probabilities or decision times are su¢ cient to ordinally measure such di¤erences.15

Proposition 2 Given a function u : A ! R and two coe¢ cients � > 0 and � > 0, if a 6= b and
a0 6= b0 belong to A, then the following are equivalent:

(i) ju (a)� u (b)j � ju (a0)� u (b0)j;

(ii) ERa;b � ERa0;b0;

(iii) MDTa;b � MDTa0;b0;

(iv) DTa;b stochastically dominates DTa0;b0.

Moreover, DTa;b and DOa;b are independent random variables.

The mathematical novelty of this proposition is the equivalence of point (iv) with the remain-
ing points (i), (ii), and (iii). The equivalence of these three points highlights a signi�cant feature
of the value-based DDM: two pairs of alternatives present the same absolute di¤erence in inten-
sity of stimuli if, and only if, they generate the same discrimination error if, and only if, their
discrimination time is on average the same. This means that, under the DDM assumptions, the
measurement of these di¤erences either by error rates à la Fechner �see, e.g., Luce [26, Ch. 2]
and Falmagne [14, Ch. 4] �or by decision times à la Cattel [5] actually coincide. In this way, two
of the historically most important hypotheses of classical psychophysics are reconciled.

12Even when they have di¤erent utility functions û1 and û2, but provided they are choosing in the same conditions.
13Even when they have di¤erent thresholds �̂1 and �̂2, but provided choice between lotteries is observed.
14Recall our previous discussion on normalizations.
15See Echenique and Saito [11] for a general revealed-preference approach to ordinal measurement of utility

di¤erences through response times.
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3 A useful variation: the EZ-DDM

In behavioral experiments it is often di¢ cult to observe decision time in an accurate manner.
What is often observed is a response time which consists of a sum

RToa;b � T ha;b +DTha;b

where DTha;b is the actual decision time (the superscript �h� stands for �hidden�) and T
h
a;b is a

�xed amount of time that in every trial takes place before the initiation of the comparison process
proper (e.g., if b is the status quo, the time needed to select alternative a for comparison among
all the elements of A n fbg) and after the conclusion of the process (e.g., the time that it takes to
execute the motor commands necessary to implement the resulting choice).
This leads to consider an augmented DDM, called EZ-DDM (Wagenmakers et al. [55]) or

simple DDM (Bogacz et al. [2] and Milosavljevic et al. [34]), in which decision time is replaced
by response time

RTa;b � Ta;b +DTa;b
The quasi-positive symmetric matrix T = [Ta;b]a;b2A is called latency matrix.

16

In this section, we combine the intuitions of the previous section and those of Wagenmakers
et al. [55] to provide an axiomatization of the EZ-DDM.
We call augmented observables any triplet of square matrices

(P o;MRTo;VRTo) =
��
P oa;b;MRT

o
a;b;VRT

o
a;b

�
: P oa;b + P

o
b;a = 1 and MRT

o
a;b = MRT

o
b;a

and VRToa;b = VRT
o
b;a for all a 6= b

	
Here P o is the matrix of empirical choice frequencies as in the previous section, MRTo and VRTo

are the symmetric matrices of empirical mean response times and empirical variances of response
times, respectively. The use of these observable quantities dates back to the mentioned Cattel [5].
To ease notation, we denote the observed odds for a against b by

Roa;b �
P oa;b
P ob;a

=
No. of times a is chosen from fa; bg
No. of times b is chosen from fa; bg (4)

The following axioms are required to hold for all distinct a; b; c 2 A.

Axiom EZ1 Roa;b > 0, MRT
o
a;b > 0, and VRT

o
a;b > 0.

Axiom EZ2 Roa;b = R
o
a;cR

o
c;b.

Axiom EZ3 VRToa;b

�
Roa;b + 1

�2 �
logRoa;b

�3�
Roa;b

�2 � 2Roa;b logRoa;b � 1 = VRToa;c
�
Roa;c + 1

�2 �
logRoa;c

�3�
Roa;c

�2 � 2Roa;c logRoa;c � 1 .
Axiom EZ4 2

�
MRToa;b

�2 � VRToa;b �
Roa;b � 1

�2
logRoa;b�

Roa;b
�2 � 2Roa;b logRoa;b � 1 .

Axioms EZ1 and EZ2 correspond to the positivity and product rule axioms introduced in
the previous section, while axioms EZ3 and EZ4 are technical and inspired by the non-axiomatic
analysis of Wagenmakers et al. [55].

16A matrix is quasi-positive if, and only if, its o¤-diagonal terms are all positive.
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Theorem 3 Let (P o;MRTo;VRTo) be the augmented observables. The following are equivalent:

(i) P o, MRTo, and VRTo satisfy EZ1, EZ2, EZ3, and EZ4;

(ii) there exist a function u : A ! R, two coe¢ cients � > 0 and � > 0, and a symmetric
quasi-positive A� A matrix T such that P o = P , MRTo = MRT, and VRTo = VRT.

In this case, �̂ = �=� is unique, and û = u=� is unique up to an additive constant. In particular,

�̂ = 4

vuutVRToa;b �
Roa;b + 1

�2 �
logRoa;b

�3
2
�
Roa;b

�2 � 4Roa;b logRoa;b � 2 and û (a)� û (b) =
logRoa;b

�̂

for all a 6= b in A. Moreover, T is unique and given by

Ta;b = MRT
o
a;b �

vuutVRToa;b �
Roa;b � 1

�2
logRoa;b

2
�
Roa;b

�2 � 4Roa;b logRoa;b � 2
for all a 6= b in A.

Clearly, the DDM corresponds to the case in which Ta;b = 0 for all a 6= b. Thus, Theorem 3 pro-
vides an alternative characterization of the DDM based on response times�means and variances.17

Hence, we write DM(û; �̂; T ) to denote both the DDM and the EZ-DDM (with �̂ = 1).

4 An application: the Metropolis-DDM algorithm

In this �nal section, we present an application of the previous analysis to multi-alternative choice
under time pressure. Here A represents the set of available alternatives and an exogenous
time limit t is imposed on the agent. For example, they might have to choose one of the following
9 available snacks in 4 seconds:

Our analysis of this problem is based on the Metropolis-DDM algorithm of Cerreia-Vioglio
et al. [6]. Although the section is self contained, we refer the reader to [6] for an in-depth
discussion of the algorithm and of its relations with the literature.18 The novel contributions of

17Notice that the axiom delivering the DDM is obtained by replacing the inequality in EZ4 with an equality. In
the proof of Theorem 3, we discuss an additional axiom that makes Ta;b constant, that is, independent of a; b (see
Footnote 32).
18The same authors are presently conducting experimental tests of the algorithm itself.
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the present section consist, �rst, in showing how the axioms we introduced so far allow to study
multi-alternative choice environments and, second, in generalizing the original Metropolis-DDM
algorithm to allow for the formation of consideration sets.19 For example, our agent might restrict
his attention to the subset C of available sweet snacks:

Formally, given a set A of available alternatives, a consideration set is a subset C of A consisting
of the items among which a consumer actually chooses in a given decision episode. These sets are
central in marketing,20 where their formation is assumed to be the �rst step in a two-step choice
process (the second step of which consists in choosing an alternative from the consideration set).
For this reason, as Ringel and Skiera [46] write, they are �the ultimate arbiters of the competition�
among brand managers, whose objective is to maximize the chances that their products belong to
these sets.21

Before describing the Metropolis-DDM algorithm, we recall some eye-tracking experimental
�ndings (in italics) on multi-alternative choice under time pressure that inspired it,22 along with
(in roman) the corresponding �ingredient�of the algorithm itself.

F1 Multi-alternative choice procedures are composed primarily of sequential pairwise compar-
isons, in which actual evaluative processing takes place.

We describe these pairwise comparisons via the Drift Di¤usion Model DM(u; �; T ).

F2 Increases in time pressure lead to acceleration of information processing, often at the cost of
accuracy.

We allow the threshold � and the latency matrix T to depend on the deadline t.

F3 Search strategies and consideration sets are adapted to time constraints and a¤ected by vi-
sual saliency, and agents do not eliminate alternatives after they are rejected in a previous
pairwise comparison.

19We also extend [6] by considering pairwise EZ-DDM comparisons (instead of pure DDM ones). But we maintain
the algorithm name unchanged.
20See the review of Shocker et al. [52], Roberts and Nedungadi [47] where an issue of the International Journal

of Research in Marketing on this topic is foreworded, and the more recent Hauser [20], or Peter and Olson [39] for
a textbook treatment.
21More recently, consideration sets have also attracted attention in economics. See, e.g., Eliaz and Spiegler [12],

Masatlioglu et al. [32], Manzini and Mariotti [31], and Gaynor et al. [17].
22See Russo and Rosen [50], Russo and Leclerc [49], Nowlis [37], Pieters and Warlop [40], Chandon et al. [7],

Krajbich et al. [22], Krajbich and Rangel [23], Reutskaja et al. [45], Milosavljevic et al. [35], and Karsilar et al.
[21].
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We describe consideration sets by a partition C of A �for example, C = f�sweet snacks�, �salty
snacks�g �that is permitted to depend on the time constraint t. Moreover, we denote by

Q (a j b)

the probability of considering a new alternative a for comparison with the temporary solution b.
This probability is allowed to vary with t too.

F4 Agents�exploration of menus is driven by the similarity and proximity of available alterna-
tives, that is, on their perceptual distance.

This �nding suggests a simple parametric form for Q that, although not necessary for our
analysis, is intuitive and performs well in simulations:

Q (a j b) = 1

jAj � 1 �
1

d (a; b)
8a; b 2 A

Here d is a perceptual distance (that is, a symmetric function) between alternatives such that
mina 6=b d (a; b) = 1 and maxa 6=b d (a; b) � 1; it captures both physical proximity and subjective
similarity. While  2 (0;1) is an exploration aversion parameter. When  is very large, the agent
basically regards as close only the nearest neighbors of the temporary solution b; instead, when 
is very small, all the considered alternatives are essentially equally distant. For example, in the
case of our 9 snacks, a simple perceptual distance is given by

d (a; b) =

8>>><>>>:
0 if a = b
1 if a and b are adjacent and are either both sweet or both salty
2 if a and b are not adjacent and are either both sweet or both salty
1 if one is sweet and the other salty

Since this distance takes into account the sweet/salty partition, so does the corresponding transi-
tion probability matrix Q.

F5 The initial �xation is random and independent of value.23

Our �nal ingredient is thus an initial probability distribution � on A, also this distribution
may depend on t.

Together, all our ingredients suggest the following decision procedure. When a menu A and
a deadline t are given, our agent �rst selects a sub-menu C of A and an initial element b in C
according to the consideration sets�partition C and the initial distribution �. Then, they consider
an alternative solution a in C with probability Q (a j b), and compares it to b via DM(u; �; T ).
If proposal a is judged superior to incumbent b, then a becomes the new incumbent and another
proposal c in C is considered and compared to a via DM(u; �; T ); otherwise, b maintains its
incumbent status and another proposal is considered and compared. This sequential exploration
and comparison continues until the time t available to decide expires and the incumbent solution
is chosen from the consideration set C.

Before describing formally this decision procedure, a couple of remarks are in order. First,
it is important to observe that the axioms of the previous sections, together with the eye-
tracking detection of binary comparisons, make these assumptions testable and their parameters

23But possibly dependent on consideration sets and visual saliency.

11



quanti�able. So, it is the analysis of the �rst part of this paper that makes empirically relevant
what we propose here.
Second, note that the nature of consideration sets we propose is both set-theoretic and proba-

bilistic. Intuitively, a partition C of A consists of consideration sets if once a set C 2 C is selected
by the agent, then:

1. any element of C can be considered (with strictly positive probability),

2. no element outside C can be considered.

Now, if the agent explores alternatives according to transition matrix Q, this means that given
any C in C and any item c in C:

1. it is possible to reach from c any element inside C in a �nite number of transitions,

2. it is impossible to reach from c any element outside C in a �nite number of transitions.

In sum, the partition C must coincide with the partition of communicating classes determined
by the exploration matrix Q.24

We are now ready to present our multi-alternative choice model, a generalization of the
Metropolis-DDM algorithm of Cerreia-Vioglio et al. [6].

Metropolis-DDM Algorithm

Input: Given t > 0, set � = �t, Q = Qt, � = �t, and T = Tt.

Start: Draw a from A according to �:

� set s0 = 0,

� set b0 = a.

Repeat: Draw a from A according to Q (� j bn) and compare it to bn via DM(u; �; T ):

� set sn+1 = sn +RTa;bn,

� set bn+1 = DOa;bn,

until sn+1 > t.

Stop: Set b� = bn.

Output: Choose b� from A.

24Speci�cally, given any c 2 C, if a =2 C, there is no �nite sequence c = a0; a1; :::; an = a such that
n�1Y
k=0

Q (ak+1 j ak) > 0 � in particular, Q (a j c) = 0 for all a =2 C In contrast, if a 2 C, such a �nite sequence

exists �in particular, a0; a1; :::; an 2 C.
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This algorithm can be seen as a parsimonious variation of the standard optimal search algo-
rithm that takes into account the presence of time pressure. In the standard algorithm, the agent
begins by selecting an initial element b in A, then at each iteration they compare an incumbent
and a proposal, and discards permanently the rejected alternative, until the menu is exhausted.
Here, the presence of a deadline may lead to the formation of consideration sets, and the possibil-
ity of mistakes makes it inadvisable to eliminate proposals that have been rejected in a previous
comparison. Nonetheless, the sequential �explore-and-compare� logic of the two procedures is
similar.
By implementing the Metropolis-DDM algorithm, the probability of selecting a given incum-

bent b is
Mt (a j b) = Qt (a j b)Pa;b 8a; b 2 A

The transition probabilityMt (a j b) combines the stochasticity of the proposal mechanismQt(a j b)
and that of the acceptance/rejection rule Pa;b (which also depends on t via �t). Therefore, after n
iterations of the repeat-until loop, the probability of b being the incumbent is the b-th component
of the row vector �tM

n
t . The next result shows that the limiting behavior of this sequence turns

out to be classical softmaximization, conditional on the communicating classes determined by Q.

Theorem 4 Let u : A ! R be a function, �t > 0 a coe¢ cient, and Qt a symmetric stochastic
A� A matrix. Then, Mt is reversible with respect to the multinomial logit distribution

p
(u;�t)
A (a) =

e�tu(a)P
b2A e

�tu(b)
8a 2 A

and, given any probability distribution �t on A,

limn!1 �tM
n
t =

X
C2Ct

�t (C) p
(u;�t)
C

where Ct is the partition of A into its communicating classes with respect to Qt.25
In particular, if Qt is irreducible, then Mt is irreducible, aperiodic, and limn!1 �tM

n
t = p

(u;�t)
A .

If Qt is irreducible,26 the Metropolis-DDM algorithm thus approximates the multinomial logit
(or softmax) distribution p(u;�t)A , irrespective of the initial distribution �t. Otherwise, the algorithm
selects a consideration sub-menu C of A and approximates the conditional multinomial logit there.
Beyond the mathematical novelty, the conceptual innovation of the algorithm presented above

relative to the original Metropolis-DDM is allowing the exploration strategy �in particular, the
consideration sets�structure �to depend on the time constraint. For instance, this is potentially
relevant in today�s marketplace in which web-based stores o¤er consumers immense choice sets
and life trends dramatically reduce deliberation times.
Last but not least, the parameters u and �t of the limit multi-alternative choice distribution

appearing in Theorem 4 are those that govern the pairwise comparisons that lead to it, and are
thus identi�ed by Theorems 1 and 3.

25As usual, pC is the conditional of pA given C. That is, pC (a) = e�tu(a)=
P

c2C e
�tu(c) if a 2 C, and pC (a) = 0

else.
26This is the case considered by Cerreia-Vioglio et al. [6], who also restrict their attention to the DDM only.
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Simulations and �nal considerations Going back one last time to our snacks�example, recall
that an agent with a deadline t of 4 seconds selected a consideration set C of 6 sweet snacks:

At this point, we initialize the Metropolis-DDM algorithm with the (binary) EZ-DDM parameters
experimentally obtained by Milosavljevic et al. [34],27 and run it:

In the plot, on the x-axis the utilities 1; 2; :::; 6 of the 6 alternatives are listed, and the y-axis
reports the alternative�s choice frequencies (with � = 1:2). The theoretical softmax distribution is
plotted in blue, the output of the Metropolis-DDM algorithm in orange. Numerical convergence
of the simulated choice distribution to softmax is evident.
Although our agent initially ignores the true value of the alternatives and �discovers�it through

DDM comparison, in circa the 80% of the cases they behave like the neo-classical utility maximizer
(who always chooses the best alternative in virtual time). The natural question regards then the
optimality of the procedure we propose: What is the optimal error rate for this algorithm? Very
low error rates �that is, very large values of � �prevent the algorithm from exploring the whole
consideration set before deadline t is reached (because pairwise comparisons take too much time),
while very high error rates �that is, very small values of � �amount to almost uniformly random
choice. Thus, an e¢ cient adjustment of the parameter � must solve this speed-accuracy tradeo¤.
Numerical simulations suggest that, for each t, there exists a unique optimal �� = �� (t) and

that �� (t) is an increasing and concave function of t �depicted as a red dashed curve below.
In the picture, the expected utility produced by the algorithm is plotted as a function of � for
t = 3; 4; :::; 17. Notice that an expected utility of more than 5:33 (resp., 5:35) is achieved in 3
(resp., 4) seconds with a �� of approximately 1:2 (resp., 1:3), etc.

27The estimates of Milosavljevic et al. [34] correspond to utilities that range between 0 and 7:071 and �s that range
between 0:849 to 1:442 for speeded binary comparisons. Here we choose utilities 1; 2; :::; 6 for our alternatives and
� = 1:2. Codes and simulations are available at https://github.com/carlobaldassi/MetropolisDDM_python
(based on Drugowitsch [10]).
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So, the simulation shows that the performance of the Metropolis-DDM algorithm, measured by
the distance between its expected payo¤ and maxa2A u (a), is very good, even under severe time
pressure. To the best of our knowledge, formal optimality results for the classical multi-alternative
version of the DDM (called MDDM) are not available, while asymptotic results that apply to
negligible error rates are not particularly useful for observed behavior (see, e.g., McMillen and
Holmes [33] and Ditterich [9]). At the same time, as we already discussed, working memory can
maintain representations of only 3 to 4 objects at any given moment. This makes the MDDM an
implausible process of multi-alternative choice for menus of more than 4 items �as discussed in
Krajbich and Rangel [23, p. 13856].28 The Metropolis-DDM algorithm, instead, needs only the
representation of incumbent and proposal in working memory, and compares them in the fastest
possible way, for given error rate.
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6 Appendix: Proofs

For brevity, sometimes we write X instead of E [X], for example we use DT andMDT interchange-
ably.

Proof of Theorem 1 (i) implies (ii). By positivity and the de�nition of observables, we have
that Roa;b > 0, for all a 6= b in A. Arbitrarily choose c 2 A, set v (c) � 0 and

v (a) � logRoa;c (5)

for all a 6= c in A. Then, for all a 6= b in A n fcg, by the product rule, we have

Roa;b = R
o
a;cR

o
c;b =

Roa;c
Rob;c

= ev(a)�v(b)

28See also Cerreia-Vioglio et al. [6]:
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and direct application of (5) delivers the same result for a = c 6= b and for b = c 6= a. Then

P oa;b = 1=
�
1 +

�
Roa;b

��1�
implies

P oa;b =
1

1 + e�[v(a)�v(b)]

for all a 6= b in A.
Tedious veri�cation shows that invariance guarantees that

DT
o

a;b

logit
�
1� ERoa;b

�
1=2� ERoa;b

= DT
o

a0;b0
logit

�
1� ERoa0;b0

�
1=2� ERoa0;b0

(6)

for all a 6= b and all a0 6= b0 in A. 29
Now arbitrarily choosing a0 6= b0 in A, and setting

�2 � DToa0;b0
logit

�
1� ERoa0;b0

�
1� 2ERoa0;b0

= DT
o

a0;b0

log

�
1� 1

1+ejv(a0)�v(b0)j
1

1+ejv(a0)�v(b0)j

�
1� 2

1+ejv(a0)�v(b0)j

= DT
o

a0;b0
ejv(a

0)�v(b0)j + 1

ejv(a0)�v(b0)j � 1 jv(a
0)�v(b0)j

(7)
and u (a) � v (a) =� for all a in A, it follows that, for all a 6= b in A,

P oa;b =
1

1 + e�[v(a)�v(b)]
=

1

1 + e��[u(a)�u(b)]
= Pa;b

and

DT
o

a;b = �2
ejv(a)�v(b)j � 1
ejv(a)�v(b)j + 1

1

jv (a)� v (b)j = �
2 e
�ju(a)�u(b)j � 1
e�ju(a)�u(b)j + 1

1

� ju (a)� u (b)j

=
�

ju (a)� u (b)j
e�ju(a)�u(b)j � 1
e�ju(a)�u(b)j + 1

=
�

ju (a)� u (b)j tanh
�
� ju (a)� u (b)j

2

�
=

�

u (a)� u (b) tanh
�
� [u (a)� u (b)]

2

�
= DTa;b

where the �rst equality is a consequence of (6) and (7). Thus (ii) holds for the DDM with
parameters u, � = 1, and �.
Verifying that (ii) implies (i) is simple and so omitted for brevity.
Finally, if (ii) holds, by (1), we have that, for all a 6= b in A,

logitP oa;b = logitPa;b = log
Pa;b
Pb;a

= log

1

1 + e�
�
�2
[u(a)�u(b)]

1

1 + e�
�
�2
[u(b)�u(a)]

=
�

�2
[u (a)� u (b)] = �

�

hu
�
(a)� u

�
(b)
i

and the second part of (3) follows; the �rst part is a consequence of

DT
o

a;b = DTa;b =
�

u (a)� u (b) tanh
�
� [u (a)� u (b)]

2�2

�
=

�

ju (a)� u (b)j tanh
�
� ju (a)� u (b)j

2�2

�

=
�̂

jû (a)� û (b)j tanh
 
�̂ jû (a)� û (b)j

2

!
= �̂

2
1� 2 1

1+exp(�̂jû(a)�û(b)j)

�̂ jû (a)� û (b)j
= �̂

2 2
�
1
2
� ERoa;b

�
logit

�
1� ERoa;b

�
29And not only if a0 = a as the axiom requires.
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As wanted. �

Proof of Proposition 2 Arbitrarily choose u 2 RA, � > 0 (� = 1), and a; b 2 A. Let � =

u (a) � u (b). Since we will repeatedly use the results of the Handbook of Brownian Motion
of Borodin and Salminen [4], henceforth HBM, we adopt their notation. Speci�cally, setting
� = �=

p
2 and z = �=

p
2,

Za;b (s)p
2

= �s+W (s)
HBM
= W (�)

s

DTa;b = min fs : jZa;b (s)j = �g = min
�
s :
��W (�)

s

�� = z	 HBM
= H�z;z

DOa;b =

8>><>>:
a if

Za;b (DTa;b)p
2

=
�p
2

b if
Za;b (DTa;b)p

2
= � �p

2

=

8<: a if W (�)
H�z;z

= z

b if W (�)
H�z;z

= �z

With this, their Equation 3.0.2 (p. 233) shows that

P [H�z;z 2 dt] = e�
�2t
2

�
e��z + e�z

�
ssz;2z (t) dt (8)

where ssz;2z (t) is de�ned on p. 451 of HBM. Their Equation 3.0.4(b) (p. 233) yields

P
h
W

(�)
H�z;z

= z
i
=

e�z

e��z + e�z

while Equation 3.0.6(b) (p. 233) gives

P
h
H�z;z 2 dt;W (�)

H�z;z
= z
i
= e�ze�

�2t
2 ssz;2z (t) dt = P [H�z;z 2 dt]P

h
W

(�)
H�z;z

= z
i

This proves that DTa;b and DOa;b are independent random variables, because DTa;b = H�z;z and
DOa;b only depends on whether W

(�)
H�z;z

= z or W (�)
H�z;z

= �z.
As to the equivalence between (i)-(iv), by (8), the density of DTa;b is

fDTa;b (t) =
�e�

�2t
4

p
�t3=2

cosh

�
��

2

� 1X
k=�1

(1 + 4k) e�
�2

4t
(1+4k)2 8t 2 (0;1) (9)

but, for all q 2 (0; 1),
P1

k=�1 (1 + 4k) q
1
4
(1+4k)2 = 4

p
q
P1

n=0 (�)
n (2n+ 1) qn(n+1) = #01 (0; q) =2

where #1 is the �rst Jacobi theta function. Thus setting y = j�j, we have

fDTa;b (t) = f (t; y) = e
� y2t

4 cosh

�
�y

2

�
1

2
p
�

�

t3=2
#01

�
0; e�

�2

t

�
8t 2 (0;1)

which is continuous and bounded, as a function of (t; y), on every rectangle Tx � Y = (0; x) �
[0;max

A
u�minA u] with x 2 (0;1).

Now, for each (�xed) x 2 (0;1), the distribution function of DTa;b is

FDTa;b (x) = F (x; y) =

Z x

0

f (t; y) dt

and it is continuous on Y because f (t; y) is continuous and bounded on Tx � Y . Moreover,

@f

@y
(t; y) =

y

2

�
�

y
tanh

�
�y

2

�
� t
�
f (t; y) 8 (t; y) 2 Tx � int (Y )
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is continuous and bounded too.
Di¤erentiation under the integral sign is then possible, and it shows that, for all y 2 int (Y ),

@F

@y
(x; y) =

Z x

0

@f

@y
(t; y) dt =

y

2

Z x

0

�
DTa;b � t

�
fDTa;b (t) dt

For x < DTa;b the integrand is positive, and so is @F=@y. While, for x � DTa;bZ x

0

�
DTa;b � t

�
fDTa;b (t) dt =

Z DTa;b

0

�
DTa;b � t

�
fDTa;b (t) dt+

Z x

DTa;b

�
DTa;b � t

�
fDTa;b (t) dt

�
Z DTa;b

0

�
DTa;b � t

�
fDTa;b (t) dt+

Z 1

DTa;b

�
DTa;b � t

�
fDTa;b (t) dt = 0

where, in the second line, inequality holds because the integrand of the second summand is neg-
ative and the �nal equality holds because

R1
0

�
DTa;b � t

�
fDTa;b (t) dt = E

�
DTa;b �DTa;b

�
, and

again @F=@y is positive. Summing up, for each (�xed) x 2 (0;1), F (x; y) is continuous on
[0;max

A
u�minA u] and di¤erentiable on (0;maxA u�minA u) with respect to y, and positivity

of the derivative yields monotonicity (for �xed x, with respect to y = ju (a)� u (b)j).
But this shows that if ju (a)� u (b)j � ju (a0)� u (b0)j, FDTa;b (x) � FDTa0;b0 (x) for all x 2

(0;1), that is, DTa;b stochastically dominates DTa0;b0.
Then (i) implies (iv). On the other hand, if DTa;b stochastically dominates DTa0;b0, then

obviously DTa;b � DTa0;b0, so that (iv) implies (iii). Moreover, DTa;b � DTa0;b0 implies

�

j�j tanh
�
� j�j
2

�
=
�

�
tanh

�
��

2

�
� �

�0 tanh

�
��0

2

�
=

�

j�0j tanh
�
� j�0j
2

�
whence j�j � j�0j because (�=y) tanh (�y=2) is strictly decreasing, for �xed � > 0, and y 2 [0;1);
but �in turn �this implies

ERa;b =
1

1 + e�j�j
� 1

1 + e�j�0j
= ERa0;b0

and (iii) implies (ii). Finally, (ii) implies (i) because

1

1 + e�j�j
= ERa;b � ERa0;b0 =

1

1 + e�j�0j
=) j�j � j�0j

As wanted. �

Proof of Theorem 3 (i) implies (ii). By EZ1, we have that Roa;b > 0, for all a 6= b in A.
Arbitrarily choose c 2 A, set v (c) � 0 and

v (a) � logRoa;c (10)

for all a 6= c in A. Then, for all a 6= b in A n fcg, by EZ2, we have

Roa;b = R
o
a;cR

o
c;b =

Roa;c
Rob;c

= ev(a)�v(b)

and direct application of (10) delivers the same result for a = c 6= b and for b = c 6= a. Then

P oa;b = 1=
�
1 +

�
Roa;b

��1�
implies

P oa;b =
1

1 + e�[v(a)�v(b)]
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for all a 6= b in A.
Tedious veri�cation shows that axiom EZ3 guarantees that

VRToa;b

�
Roa;b + 1

�2 �
logRoa;b

�3�
Roa;b

�2 � 2Roa;b logRoa;b � 1 = VRToa0;b0
�
Roa0;b0 + 1

�2 �
logRoa0;b0

�3�
Roa0;b0

�2 � 2Roa0;b0 logRoa0;b0 � 1 (11)

for all a 6= b and all a0 6= b0 in A. 30
Now arbitrarily choosing a0 6= b0 in A, and setting

2�4 � VRToa0;b0
�
Roa0;b0 + 1

�2 �
logRoa0;b0

�3�
Roa0;b0

�2 � 2Roa0;b0 logRoa0;b0 � 1 (12)

and u (a) � v (a) =� for all a in A, it follows that, for all a 6= b in A,

P oa;b =
1

1 + e�[v(a)�v(b)]
=

1

1 + e��[u(a)�u(b)]
= Pa;b

and

VRToa;b = 2�
4

�
Roa;b

�2 � 2Roa;b logRoa;b � 1�
Roa;b + 1

�2 �
logRoa;b

�3 = 2�4
(Ra;b)

2 � 2Ra;b logRa;b � 1
(Ra;b + 1)

2 (logRa;b)
3 = VRTa;b (13)

where Pa;b and VRTa;b are the theoretical choice frequency and the theoretical variance of RTa;b
of any DM(u; �; �) with u and � chosen as above.31 By axiom EZ4, the quantity

Ta;b � MRToa;b �

vuutVRToa;b �
Roa;b � 1

�2
logRoa;b

2
�
Roa;b

�2 � 4Roa;b logRoa;b � 2
is positive for all a 6= b in A,32 and �when DM(u; �; T ) is considered �we have

MRTa;b = Ta;b +MDTa;b

= MRToa;b �

vuutVRToa;b �
Roa;b � 1

�2
logRoa;b

2
�
Roa;b

�2 � 4Roa;b logRoa;b � 2 + �

u (a)� u (b) tanh
�
� [u (a)� u (b)]

2

�

= MRToa;b �

vuutVRToa;b �
Roa;b � 1

�2
logRoa;b

2
�
Roa;b

�2 � 4Roa;b logRoa;b � 2 +
s
�4
(Ra;b � 1)2

(Ra;b + 1)
2

1

(logRa;b)
2

= MRToa;b �

vuutVRToa;b �
Roa;b � 1

�2
logRoa;b

2
�
Roa;b

�2 � 4Roa;b logRoa;b � 2 +
vuut�4 �Roa;b � 1�2�

Roa;b + 1
�2 1�

logRoa;b
�2

30And not only if a0 = a as the axiom requires.
31The �rst equality is a consequence of (11)-(12) and the last one follows from the results of [55].
32Also notice that, Ta;b = Tb;a. Moreover Ta;b is independent of the pair a; b if and only if the assumption:

MRToa;b �

vuuuutVRToa;b
�
Roa;b � 1

�2
logRoa;b

2
�
Roa;b

�2
� 4Roa;b logRoa;b � 2

= MRToa;c �

vuutVRToa;c �
Roa;c � 1

�2
logRoa;c

2
�
Roa;c

�2 � 4Roa;c logRoa;c � 2
for all distinct a; b; c 2 A, is added to EZ1�EZ4.
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but, by (13), it follows

�4
�
Roa;b � 1

�2�
Roa;b + 1

�2 1�
logRoa;b

�2 =
VRToa;b
2

�
Roa;b + 1

�2 �
logRoa;b

�3�
Roa;b

�2 � 2Roa;b logRoa;b � 1
�
Roa;b � 1

�2�
Roa;b + 1

�2 1�
logRoa;b

�2
= VRToa;b

�
Roa;b � 1

�2
logRoa;b

2
�
Roa;b

�2 � 4Roa;b logRoa;b � 2
and so MRTa;b = MRToa;b. Thus (ii) holds for the EZ-DDM with parameters u, � = 1, �, and T .
Verifying that (ii) implies (i) and checking the uniqueness properties of the parameters is a long
exercise, based on our previous analysis and the results of [55]. �

Proof of Theorem 4 In the proof we assume

Pa;b =

8>><>>:
1� e��[u(a)�u(b)]

1� e�(�+�)[u(a)�u(b)] if u (a) 6= u (b)

�

�+ �
if u (a) = u (b)

2 (0; 1) (14)

thus allowing for asymmetric lower and upper barriers,33 �� < 0 and � > 0, respectively.
The explicit form of M =Mt (the subscript t will be omitted throughout) is

Mba =M (a j b) =
(
Q (a j b)Pa;b if a 6= b

1�
P

c2AnfbgQ (c j b)Pc;b if a = b
(15)

and this allows to show that M is a bona �de stochastic matrix.
Next we show that M is reversible with respect to pA = p

(u;�)
A . Let a 6= b in A.

� If u (a)� u (b) 6= 0, then

M (a j b) pA (b) =
Q (a j b)P
x2A e

�u(x)
� e

�u(b) � e��u(a)+�u(b)+�u(b)
1� e�(�+�)[u(a)�u(b)]

=
Q (b j a)P
x2A e

�u(x)
� e

�u(a) � e��u(b)+�u(a)+�u(a)
1� e�(�+�)[u(b)�u(a)] =M (b j a) pA (a)

because Q is symmetric and

e�u(b) � e��u(a)+�u(b)+�u(b)
1� e�(�+�)[u(a)�u(b)] =

e�u(a) � e��u(b)+�u(a)+�u(a)
1� e�(�+�)[u(b)�u(a)]

� Else u (a)� u (b) = 0, that is, u (a) = u (b), then

M (a j b) pA (b) = Q (a j b)
�

�+ �

e�u(b)P
x2A e

�u(x)

= Q (b j a) �

�+ �

e�u(a)P
x2A e

�u(x)
=M (b j a) pA (a)

because Q is symmetric.

33See footnote 7.
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Since M (a j b) pA (b) =M (b j a) pA (a) also if a = b, then reversibility holds.

It is then easy to see that, if Q is irreducible, thenM is irreducible and aperiodic. In turn this
implies that pA is its stationary distribution and therefore �Mn ! pA as n!1 for all � 2 �(A)
(see Madras [30, Ch. 4]).34

If instead Q is reducible, since it is symmetric then all communicating classes are closed (see
Norris [36, Ch. 1]). In fact, if Qa1a2Qa2a3 : : : Qam�1am > 0, then Qamam�1Qam�1am�2 : : : Qa2a1 > 0
and a1 ! am implies am ! a1. Rearrange the alternatives so that the communicating classes are

A1 = f1; :::; jA1jg ; A2 = fjA1j+ 1; :::; jA1j+ jA2jg ; : : : ; AK = fjAj � jAK j+ 1; :::; jAjg

Notice that given any class Ak and any b 2 Ak, then Q (a j b) = Qba = 0 for all a =2 Ak,35

thus for all the rows belonging to Ak the only nonzero elements are in columns belonging to Ak
(and also the converse is true by symmetry). That is, Q = diag (Q1; : : : ; QK) is a block diagonal
matrix; moreover, by de�nition of communicating classes all the Qk are irreducible (stochastic
and symmetric). Now by (15) also M = diag (M1; : : : ;MK) is block diagonal. By the �rst part
of this proof, each of the Mk�s is aperiodic, irreducible, with stationary distribution given by the
restriction pk of pAk to Ak. Then (see again Madras [30, Th. 4.2])

Mn
k !

26664
pk
pk
...
pk

37775 � �k 8k = 1; :::; K

now let � =
�
�1 �2 � � � �K

�
2 �(A) with �k 2 RjAkj+ for all k = 1; :::; K. Given any

k = 1; :::; K, since �k�k is the linear combination of the lines of �k with weights given by �k,

�kM
n
k ! �k�k = �k1pk + �k2pk + � � �+ �kjAkjpk = � (Ak) pk

therefore, by block-multiplication,

�Mn =
�
�1M

n
1 �2M

n
2 � � � �KM

n
K

�
!
�
� (A1) p1 � (A2) p2 � � � � (AK) pK

�
and so �Mn (a)!

KX
k=1

� (Ak) pAk (a) for all a in A. As wanted. �
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