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Abstract

In this paper I use panel data to identify and estimate spillover effects when the
underlying network is sparse and unobserved. The outcome of each entity depends
on its own covariates, the outcomes of others (endogenous effects), the covariates of
others (contextual effects) and an entity-specific fixed effect. Sparsity restrictions are
exclusion restrictions of unknown location, and lead to point identification if the network
is suitably connected. Prior knowledge that a particular covariate does not generate
contextual effects may also lead to point identification. I use the results of Gautier
and Tsybakov (2014) for estimation, model selection and inference under sparsity. The
results of a Monte Carlo experiment demonstrate applicability in realistic settings.
I apply the approach to study R&D spillovers in an oligopoly model, finding that
spillovers are sent predominantly by large firms and that R&D stocks are below the social
optimum. My results do not depend on pre-specified competition and technology networks.

JEL codes: C31, L14, L24

Key words: Networks, spillovers, panel data, peer effects, R&D spillovers, high-dimensional
econometrics

1. Introduction

Spillover effects occur in many applied settings, including technology adoption, treatment
effects, risky behaviors, peer effects in education, economic growth, labor market performance
and almost all strategic contexts. There are two types of spillover: endogenous effects, through
which the outcomes of interest are simultaneously determined, and contextual effects, through
which the outcomes depend on the covariates of others (Manski, 1993).

In order to empirically evaluate spillovers there must be some notion of which entities
interact with one another and to what extent. That is to say, there must be an underlying
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network through which spillovers operate.1 Most existing methodologies treat the network
as observed and exogenous, and exploit its properties to identify some low dimensional
parameters which capture the endogenous and contextual effects.2 For example, in order to
evaluate R&D spillovers in oligopoly, Bloom et al. (2013) and König et al. (2014) use data
on sales and patents to construct competition and technology networks, through which the
spillovers are assumed to operate.

In this paper, I suppose that the network is unobserved and sparse. This means that each
entity has few direct neighbors compared to the feasible number. The main contribution is to
propose a new identification strategy based around a sparsity restriction. In addition, I propose
a novel means of conducting estimation, model selection and inference under sparsity through
applying the results of Gautier and Tsybakov (2014).

From an applied perspective, the method is useful if network data are unavailable or subject
to measurement error, which may arise if it is unclear which metric is appropriate to measure
distance or due to censoring.3 This is particularly important in economic applications, in which
the notion of ‘economic distance’ is not well defined. Moreover, if the research objective is
to study the identities or types of entities which send and receive spillovers, it is crucial to
estimate the network rather than impose it. In the empirical application, I find that R&D
spillovers are predominantly sent by large firms.

The baseline specification is a linear panel model with endogenous and contextual effects.
Entities interact through an unobserved network, which determines the locations of nonzero
effects. Spillovers may be heterogeneous and asymmetric. The parameters for the spillovers
sent from entity j to i 6= j are indexed by ij. It is for this reason that longitudinal data are
required. I also study an extension of the model which incorporates entity-specific fixed effects.

I derive two identification results, one based on a sparsity restriction, and the other on a
natural restriction on the contextual effects. Sparsity is equivalent to exclusion restrictions of
unknown locations and leads to point identification if the network satisfies a condition related
to the number and nature of its vertex-independent paths.4 I derive rank and order conditions
for point identification under sparsity, which reduce to the classical conditions for structural
equations models if the network is observed.

The identification strategy under sparsity uses exogenous variation in the covariates of
indirect neighbors to identify the endogenous effects exerted by the direct neighbors. This idea
is studied in Bramoullé et al. (2009) under network observability. My innovation is to extend
the approach to a setting where the researcher knows that the number of neighbors is bounded
from above, but does not know neighbor identities. To account for the unknown network, up
to twice as many restrictions are required to obtain point identification, which is attained if the
network is sparse and suitably connected.

1There may be a different network for each source of spillovers, though most research in this area assumes a
single common network.

2Exceptions include Manresa (2014); Lam and Souza (2013); de Paula et al. (2016); Gautier (2015) and Gautier and
Rose (2016), which do not assume network observability. The precise relationship with these papers is discussed at
the end of this section.

3In social network data, the number of friends than an individual may name is usually constrained from above.
For example, in the Ad-Health data, students are asked to name up to 5 friends.

4A path is a sequence of neighboring vertices, beginning at one vertex and ending at another. Two paths are
vertex independent if they have no vertex in common.

2



Figure 1: R&D partnerships in the electronics industry (Source: Duysters et al. (1999))

Many real world networks are sparse and connected. Social networks are a good example,
as documented by Stanley Milgram’s famous ‘small world’ experiment. For a concrete example,
consider the R&D partnership network for major firms in the electronics industry, which is
studied in Duysters et al. (1999) and depicted in figure 1.5 The vertices represent firms, and
the edges represent R&D collaborations as defined in the MERIT-CATI database in 1999.6 Two
things are immediately apparent. First, the network is sparse: each firm has relatively few
partnerships relative to the number of firms. Second, the network is connected: any firm can
be reached from any other firm through neighbors-of-neighbors.

The second identification result shows that prior knowledge that a particular covariate does
not generate contextual effects can lead to point identification. If each entity has a covariate
which determines its own outcome but not that of others, exogenous variation in this covariate
may be used to instrument the outcome in the other equations. This approach does not
rely on the properties of the network governing the endogenous effects, and is applicable in
settings where there are entity-specific covariates which determine the costs and/or benefits of
engaging in the outcome. For example, in the empirical application, each firm’s output may be
determined by exogenous, firm-specific variation in its costs or demand.

In typical applications, the number of periods (T) is small relative to the number of entities
(N). This means that standard estimation and inference procedures are inapplicable because
the number of parameters and instruments in each equation is linear in N, and may exceed the
number of observations T. Moreover, in the absence of exclusion restrictions (i.e. under sparsity
restrictions alone), the number of parameters exceeds the number of instruments. I show that,
in addition to identifying the parameters, sparsity may also be exploited to address lack of
data. To do this, I apply the Self Tuning Instrumental Variables (STIV) estimator developed in
Gautier and Tsybakov (2014).

The STIV estimator is suited to high-dimensional linear settings with many endogenous
covariates and many instruments. The objective function penalizes the `1 norm of the parameter

5Other examples of sparse and connected networks include lending networks, infrastructure networks, supply
networks, trade networks and co-authorship networks.

6An edge between two firms exists if there is any type of R&D collaboration, including technology transfers,
joint research, joint development, cross licensing, R&D contracts, joint ventures and research corporations.
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vector, yielding sparse solutions. Gautier and Tsybakov (2014) show that the estimated set of
nonzero parameters is a superset of the true set of nonzero parameters with high probability,
provided that they are not too close to zero. Under a stronger assumption on the size of the
nonzero parameters, the estimated and true sets coincide. Consequently, it is possible to exactly
recover the true network if the spillovers are sufficiently large.

The convergence rate of the STIV estimator depends on the sparsity of the parameter
vector and the ratio of the logarithm of the number of instruments and the sample size
(Gautier and Tsybakov, 2014). This implies that even though the number of parameters in
equation i grows linearly with N, the `2 norm of the estimation error converges to zero at the
rate

√
|Ei| log(N)/T, where |Ei| is the number of direct neighbors of entity i.7 Consistency

requires |Ei| log(N)/T → 0, which can be achieved even as N/T → ∞ if the network is
sufficiently sparse. I conduct simulations to evaluate the performance of the method, with
results demonstrating that it is applicable in realistic settings.

I apply the approach to study R&D spillovers and product market rivalry in a structural
oligopoly model. Results suggest that the ratio of the marginal social and private benefits of
R&D was around 1.03 between 1981 and 2001. From a welfare perspective, this is indicative
of underinvestment in R&D. Relative to existing work, the novelty lies in estimation rather
than imposition of the competition and technology networks. This implies that my results are
robust to misspecification of the networks, and permits the analysis of the identities and types
of firms which send and receive spillovers. The remainder of this section reviews the existing
literature and outlines the structure of the paper.

1.1. Related Literature

The majority of papers in the spillover effects literature assume that the network is observed
and exogenous. A comprehensive review is provided by de Paula (2015). Identification of
spillover effects if the network is not observed has only recently received attention. Blume et al.
(2010) discuss identification prospects when the network is partially observed, such that the
researcher knows neighbor identities but does not know the strength of the ties. The authors
provide identification results for the case where the network is known to be circular and the
weight of the ties decays geometrically in the distance between agents.

Blume et al. (2015) show that almost nothing can be learned about spillovers in the case
where the researcher has no prior information on the underlying network, though prospects are
improved under partial information.8 If the researcher knows the network for the contextual
effects, point identification can be attained if there are two entities which are known not to
be neighbors in the endogenous effects network.9 Blume et al. (2015) also show that point
identification is feasible if there are sufficiently many disconnected entities in the endogenous
and contextual effects networks, assuming that the researcher knows their identities. Souza
(2014) supposes that the network is unobserved but depends exclusively on entities’ observed

7To focus on the relative roles of N and T, the dimensions of the regressors X it and instruments Zit are fixed to
be K and L respectively. For this reason, they do not appear in the rates.

8Blume et al. (2015) study the case where each source of spillovers may operate through a different adjacency
matrix.

9There is an additional, technical condition which depends on the specifics of the model in Blume et al. (2015)
and is omitted here for brevity.
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characteristics, which are also assumed to be exogenous. In this event, the social effects
parameters are partially identified.

The strand of the literature to which my work belongs has focussed on panel data models.
Manresa (2014) considers estimation of contextual effects using panel data, treating the network
as sparse and unobserved. The author proposes a pooled LASSO estimator, which is a variant
of the LASSO estimator studied in Tibshirani (1996). Lam and Souza (2013) study estimation
of contextual and endogenous effects using panel data, treating the network as unobserved
and applying LASSO to estimate the parameters. Since the LASSO estimator does not allow
for endogeneity, the authors assume that the variance of the structural error decays to zero
asymptotically in order to obtain consistency results. The estimators in Manresa (2014) and
Lam and Souza (2013) rely on an iterative procedure, the properties of which are not well
understood.

de Paula et al. (2016) study identification and estimation of contextual and endogenous
effects using panel data. The authors derive identification results similar to those of Bramoullé
et al. (2009), which require linear independence of powers of the adjacency matrix. These results
may be used to uniquely recover the spillovers and underlying network from the reduced form
parameter matrix, which may be estimated directly by applying the adaptive LASSO of Zou
(2006). This approach requires that the reduced form parameter matrix be sparse, which can be
achieved if each entity is connected to few others, either directly or indirectly. This is stronger
than the sparsity restriction I consider in this paper, which restricts only the direct connections.
The authors also study estimation based on a sparse structural form by applying the adaptive
GMM estimator of Caner and Zhang (2014). The properties of this estimator are known if
N/T → 0 as N, T → ∞.

Relative to these papers, this paper makes two main innovations. First, I derive identification
results under sparsity in a model with endogenous and contextual effects. Second, through
applying the results of Gautier and Tsybakov (2014), I show that sparsity may be exploited to
conduct estimation, model selection and inference even when N is large relative to T and the
variance of the structural disturbance does not go to zero.

In statistics, the identification results in this paper are related to those of Candes and Tao
(2007); Gautier and Tsybakov (2014) and Kang et al. (2016). Candes and Tao (2007) discuss
conditions for exact recovery of β in the noiseless case in which y = Xβ, β is p× 1 and X is
n× p with n < p. Sparsity means that β has at most s nonzero elements. To perform exact
recovery based on `1 penalization, the authors require a ‘uniform uncertainty principle’. For
this condition to hold, it is necessary that any sub-matrix of X formed from 2s columns has
full column rank. This implies that there do not exist sparse β1 6= β2 such that Xβ1 = Xβ2,
and hence that β is identified.

Gautier and Tsybakov (2014) discuss identification in a single equation model with many
endogenous regressors, many instruments and unknown exclusion restrictions. To see the
argument, consider the population model y = X ′β + ε, E[Zε] = 0, where y and ε are scalars, X
is p× 1 and Z is l× 1, and denote by X J the sub-vector of X formed from elements J ⊆ {1, ..., p}.
Under sparsity, the vector β has at most s nonzero entries, so the outcome equation can be
written as y = X ′Jβ

β Jβ
+ ε where Jβ is the support of β. Gautier and Tsybakov (2014) show that

point identification is attained if E[ZX ′Jβ
] has rank s and the vector E[Zy] lies in the range of
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E[ZX ′Jβ
] but not in the range of E[ZX ′J̃β

] for some other J̃β ⊆ {1, ..., p} with cardinality at most
s. These conditions respectively mean that there is a unique sparse parameter vector which
could have generated the data, which also satisfies the usual rank condition.

Kang et al. (2016) study a single equation model with one endogenous regressor and many
instruments. The authors study the case where all of the instruments are strong but it is not
known which are excluded. The main result is to show that point identification is attained if at
least half of the instruments are excluded.

In this paper, I provide identification results for linear systems of equations with endo-
geneity, and present rank and order conditions similar to the of the classical conditions for
identification in structural equations models. To do this, I modify the approach of Candes and
Tao (2007) to allow for endogeneity. Moreover, I relate the rank condition to the properties of
the underlying network.

The remainder of the paper is structured as follows. Section 2 explains the notations and
network theoretic terminology. Section 3 sets out the baseline model, and section 4 presents
identification results. Section 5 presents the estimation strategy, which is applied to the
simulations in section 6 and the empirical application in section 7. Section 8 concludes. All
proofs are gathered in the appendix.

2. Notation

For X ∈ Rm×n, XY ,X denotes the sub-matrix formed from rows Y ⊆ {1, ..., m} and columns
X ⊆ {1, ..., n}. If Y = {1, ..., m}, the sub-matrix is X ·,X and if X = {1, ..., n} it is XY ,·. If X is
square, diag(X) is the column vector comprising its diagonal elements. The m dimensional
identity matrix is Im and vector of ones is ιm. The cardinality of a set S is |S|. The difference
between two sets is S1\S2. The indicator function for condition c is 1c.

A network is a tuple, G = {V , E}, where V = {v1, v2, ..., vN} is a finite set of vertices and E
is a finite set of edges, which are ordered pairs of vertices. I consider simple networks, in which
there are no duplicate edges, and no edges from a vertex to itself. The network is undirected
if (j, i) ∈ E ⇔ (i, j) ∈ E , and directed otherwise. My results apply equally to directed and
undirected networks.

A walk w = (v1, e1, v2, e2, ..., en, vn+1) is an alternating sequence of vertices and edges, such
that for all m = 1, ..., n : em = (vm, vm+1) ∈ E . There is a path from vertex j to vertex i if there
is a walk beginning at j and ending at i. For two subsets of vertices, V1,V2 there is a path
from V2 to V1 if there is a path from some j ∈ V2 to some i ∈ V1. Two paths from V2 to V1 are
vertex-independent if they do not have a common vertex.

The connectivity of the network C is the set of ordered pairs of vertices such that (j, i) ∈ C if
there is a path from j to i and j 6= i. This set satisfies C ⊇ E . The network G is connected if, for
each pair of vertices, (i, j) ∈ C or (j, i) ∈ C, and strongly connected if (i, j) ∈ C and (j, i) ∈ C.

For vertex i, Ei = {j ∈ V : (j, i) ∈ E} are its neighbors and Ci = {j ∈ V : (j, i) ∈ C} is
its neighborhood. These sets satisfy Ci ⊇ Ei. The complements of these sets are the non-
neighbors E c

i = V\{Ei ∪ i}, and the non-neighborhood Cc
i = V\{Ci ∪ i}. The in-degree is the

number of neighbors |Ei| and the out-degree is the number of vertices for which i is a neighbor
|{j ∈ V : i ∈ Ej}|. Vertex i is isolated if Ei = ∅. The binary adjacency matrix G ∈ {0, 1}N×N
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represents the network. Element Gij is equal to one if (j, i) ∈ E and zero otherwise.

3. Model

There are N vertices V = {1, 2, ..., N}, which interact for T periods through a network G =

(V , E) with connectivity C. In period t, vertex i has a scalar outcome Y it, which is determined
according to:

Y it =

(
∑
j∈Ei

ψijY jt + γ′ijX jt

)
+ γ′iiX it + εit (3.1)

where X it ∈ RK is a vector of covariates and εit is a scalar representing unobserved heterogene-
ity. The set of edges E is defined as the set of ordered pairs of vertices (j, i) such that j exerts at
least one spillover on i:

E = {(j, i) ∈ V2 : j 6= i, ψij 6= 0 or γij 6= 0} (3.2)

Associated with each vertex there is a vector of instrumental variables Zit ∈ RL, which may
be constructed using current, past or future values of the covariates or outcomes of any of the
vertices, or using some other external source of variation. In particular, if X it is exogenous (see
assumption 4.5), Zit = X it is natural.

For clarity of exposition, the intercept is omitted from the outcome equation (3.1). This is
rectified in section 4.3, which decomposes the disturbance to be the sum of vertex-specific fixed
heterogeneity and a remaining vertex-period term. All of the identification results remain valid
under a minor modification of the assumptions, which is presented in section 4.3. Aside from
linearity, (3.1) is relatively general, and includes the specifications in Manresa (2014); Lam and
Souza (2013) and de Paula et al. (2016) as special cases. In particular, it allows for endogenous
and contextual spillovers which may be heterogeneous and directed.

Equation (3.1) is more compactly expressed as:

Y = ΨY + ΓX + ε (3.3)

where Y and ε are N × T, Ψ is N × N with diagonal elements equal to zero, Γ is N × NK and
X is the NK× T matrix of stacked covariates. The NL× T matrix of stacked instruments is Z.
The N × N(1 + K) matrix of structural parameters is denoted Θ = (Ψ Γ). The row vector Θi,·

gives the spillovers received by vertex i. If the endogenous effects satisfy a stability condition
(see assumption 4.4), the reduced form of (3.3) is:

Y = ΠX + η (3.4)

where Π = (IN −Ψ)−1Γ and η = (IN −Ψ)−1ε.
In the empirical application the vertices are firms, which are observed annually. Firms

make R&D investments and engage in Cournot competition on the product market. Based on
the production and demand specifications in section 7 equation (3.1) is a Cournot best response
function in which Y it is the log of real sales, X it is the log R&D stock and Zit are instruments
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constructed from measures of firms’ tax incentives for R&D investments and lags of the log
R&D stock. The parameters Ψ and Γ respectively have structural interpretations in terms of
demand elasticities and the parameters of the production function. The network G determines
which firms exert spillovers on one another, either through competing on the product market,
or through technology spillovers, which serve to reduce the beneficiaries costs.10 Sections 4, 5
and 6 abstract away from the empirical application, to which we return in section 7.

4. Identification

A parametric model is point identified if the set of structural parameters which are consistent
with the restrictions is a singleton. Otherwise the model may be partially identified. This
section focuses on identification of Θ. Identification of the network G follows immediately
using (3.2). The following assumptions are used in some or all of the propositions.

Assumption 4.1 (Weak stationarity)

(Y ·,t, X ·,t, Z·,t) is weakly stationary.

Assumption 4.2 (Linearly independent longitudinal variation)

rank
(
E
[
X ·,tZ′·,t

])
= NK

Assumption 4.3 (Normalization)

diag(Ψ) = 0

Assumption 4.4 (Stability)

det(IN −Ψ) 6= 0

Assumption 4.5 (Strict exogeneity)

E
[
ε·,tZ′·,t

]
= 0

Assumption 4.6 (s-sparsity)

For a specified s ∈NN , |Ei| ≤ si ∀i ∈ V

Assumption 4.1 is a weak stationarity assumption, which implies that the expectations
are defined in the usual way. Assumption 4.2 is a full rank condition on the covariates and
instruments. A necessary condition for assumption 4.2 is L ≥ K. If Z = X, assumption 4.2
mandates that the time series of the NK covariates be linearly independent. Otherwise, the
vector of instruments must generate linearly independent time series.

Assumption 4.3 is a normalization and assumption 4.4 is a stability condition for the
endogenous effects. These assumptions are invoked in almost all structural equation models.

10I follow Bloom et al. (2013) and König et al. (2014) in assuming that R&D investments reduce costs. An
alternative specification could consider R&D investments which increase demand.
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Assumption 4.5 is a strict exogeneity assumption. Variants of this assumption, (usually with
Z = X) are commonly invoked throughout the literature on identification of spillover effects
(Blume et al., 2010; de Paula, 2015), and underpin the identification strategies of Lam and
Souza (2013); Manresa (2014) and de Paula et al. (2016), among others. Many papers also make
a stronger conditional exogeneity assumption such as E [ε·,t|Z·,t] = 0.

Assumption 4.6 is a sparsity restriction on the network G. It restricts the in-degrees of the
vertices, but leaves the out-degrees unrestricted.11 This is important in applied settings where
some vertices are more influential than others. For example, in the empirical application, it
may be that particular firms are ‘technological leaders’.

The sparsity restriction 4.6 is useful for both identification and estimation. From an
identification perspective, it generates exclusion restrictions of unknown locations, which
lead to point identification under a rank condition. From an estimation, model selection and
inference perspective, sparsity is useful to address lack of data, and can lead to consistency
and good finite sample properties even if N/T is large. This is studied in section 5.

The next part of this section studies the extent to which sparsity restrictions are useful for
identification. To do this, first define the identified set, which is the the set of parameters which
are compatible with assumptions 4.3-4.6 for some sparsity s ∈NN :

I(s) =
{

Θ : diag(Ψ) = 0, det(IN −Ψ) 6= 0,
E
[
(Y ·,t −ΨY ·,t − ΓX ·,t) Z′·,t

]
= 0, |Ei| ≤ si ∀i ∈ V

}
(4.1)

It is clear from the definition of I(s) that for s1 ≤ s2 we have I(s1) ⊆ I(s2). Consequently,
strengthening the sparsity assumption weakly shrinks the identified set. If s ≥ (N − 1)ιN ,
the set I(s) is the identified set under unrestricted sparsity, which is denoted by I from this
point. To fix ideas, the following lemma summarizes a well known non-identification result for
structural equation models.

Lemma 4.7 (Non-identification of the unrestricted model)
Let Θ ∈ I and let assumptions 4.1 and 4.2 be satisfied. Θ is not point identified.

Lemma 4.7 states that assumptions 4.1-4.5 are insufficient for point identification. In this
case, the number of structural parameters exceeds the number of reduced form parameters
by N(N − 1), implying that Π is not an injective mapping. The next sub-section studies
identification under sparsity.

4.1. Sparsity Restrictions

For clarity of exposition, the results in this sub-section are presented for the case where there
is a single covariate, such that K = 1. Identification results for general K require additional
notation and complicate the argument. These results are provided in the appendix. To fix ideas,
the next lemma considers identification under network observability.

Lemma 4.8 (Identification when the network is observed)
Let Θ ∈ I and let assumptions 4.1 and 4.2 be satisfied. Assume further that G is observed. Θi,· is point
identified if the sub-matrix of Π with rows Ei and columns V\{Ei ∪ i} has full row rank.

11Although clearly no vertex can have an out-degree exceeding s′ιN .
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Figure 2: A network in which Θ1,· is point identifiable

V1

V2

V3

V4

V5

V6

Lemma 4.8 presents the classical rank condition for point identification. The basic idea is to
use exogenous variation in the covariates of vertices in the neighborhood of i as instruments
for the outcomes of i’s neighbors. This approach is studied in the spillover effects context by
Bramoullé et al. (2009). As an example, consider the network in figure 2, and suppose that the
neighbor identities are known. To point identify Θ1,·, one needs instruments for the outcome
of vertex 4. Candidate instruments are the covariates of vertices 2, 3, 5 and 6, which are in the
neighborhood of 1 but are not neighbors. This means that their covariates are excluded from
equation 1. Point identification is attained if any of these have a reduced form effect on the
outcome of vertex 4.

The next proposition extends the identification argument of Bramoullé et al. (2009) to the
case where the researcher knows that the number of neighbors is bounded from above, but
does not know their identities. To do this, I adapt the identification argument in Candes
and Tao (2007) to incorporate endogeneity. Before stating the result, it is useful to define the
observable connectivity:

CΠ = {(j, i) : j 6= i, Πij 6= 0} (4.2)

This set describes the information on the the network G which may be inferred from the
reduced form parameters. Similarly, I define the observable neighborhood of vertex i as
CΠ

i = {j ∈ V : (j, i) ∈ CΠ}.
The observable connectivity CΠ need not equal the connectivity C. This is because two

vertices being connected is not sufficient for a nonzero reduced form effect. For example, if
Γ = (IN −Ψ) then Π = IN and CΠ = ∅ regardless of C. In this example, the endogenous and
contextual effects exactly offset one another. From an identification perspective, this result is
negative: one cannot learn anything about the set of edges E based on the support of Π. All
that we can say for certain is that if j 6= i has a reduced form effect on i then j must be in i’s
neighborhood. Formally, this means C ⊇ CΠ.
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In order to learn more about the network based on the observable connectivity, one can
also make the following assumption:

Assumption 4.9 (Reduced form effect of i’s neighbors)

For a given i ∈ V , Πij 6= 0 ∀j ∈ Ei

Assumption 4.9 requires that every neighbor of i has a reduced form effect on i’s outcome.
Under this assumption one can infer a superset of the neighbors of i from Π, such that
Ci ⊇ CΠ

i ⊇ Ei. The second part of proposition 4.10 uses assumption 4.9. Similar assumptions
are made in Moffitt (2001); Lee (2007); Davezies et al. (2009); Bramoullé et al. (2009); Lam and
Souza (2013) and de Paula et al. (2016).

Proposition 4.10 (Identification under sparsity)
Let Θ ∈ I(s) and let assumptions 4.1 and 4.2 be satisfied.

(i) Θi,· is point identified if for every

Ẽi ∈ {Ẽi : Ẽi ⊆ E c
i , |Ẽi| = min[si, |E c

i |]}, (4.3)

the sub-matrix of Π with rows Ei ∪ Ẽi and columns V\{Ei ∪ Ẽi ∪ i} has full row rank.

(ii) In addition, let assumption 4.9 be satisfied for vertex i. Then Ci ⊇ CΠ
i ⊇ Ei and part (i) applies

with (4.3) replaced by

Ẽi ∈ {Ẽi : Ẽi ⊆ E c
i , |Ẽi| = min[si, |E c

i |]} ∩ CΠ
i (4.4)

Proposition 4.10 extends the classical rank condition to the case where the network is
unobserved and sparse. Sparsity is equivalent to placing exclusion restrictions of unknown
locations. Point identification is more challenging compared to the case where the network is
observed. This is because there may be more than one set of neighbors which could generate
the same data. In proposition 4.10, the potentially observationally equivalent neighbors are
denoted by Ẽi.

The sparsity restriction |Ei| ≤ si places an upper bound on the number of neighbors of
vertex i. This implies that in any observationally equivalent network G̃, i can have at most si

neighbors (i.e. |Ẽi| ≤ si). The argument is as follows. If si is small enough, then at least some
of the non-neighbors in the observationally equivalent network must also be non-neighbors in
the true network.12 These common non-neighbors are given by the set V\{Ei ∪ Ẽi ∪ i}, which is
non-empty for sufficiently small si. The covariates of the common non-neighbors are excluded
in both networks, and may be used as instruments for the outcomes of Ei ∪ Ẽi, which are
neighbors of i in at least one of the networks. If the appropriate sub-matrix of the reduced
form parameter matrix has full row rank, Ei = Ẽi and the neighbors are uniquely determined.

12For si > (N − 1)/2 there need be no zeros in common for row i of the true and observationally equivalent
adjacency matrices. However, for si = (N − 1)/2− ai with ai ≥ 0, the number of zeros common to row i of the true
and observationally equivalent adjacency matrices must be at least 1 + 2ai if N is even and at least 2 + 2ai if N is
odd.
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To attain point identification, the rank condition must hold over all of the possibly observa-
tionally equivalent neighbors. For part (i) of proposition 4.10, this set is:

Ẽi ∈ {Ẽi : Ẽi ⊆ V , |Ẽi| ≤ si} (4.5)

For this, it suffices that the rank condition holds over the smaller set in (4.3). This is because
the smaller set in (4.3) considers only the largest possible sets of observationally equivalent
neighbors.

In part (ii), it is additionally assumed that if j is a neighbor of i then at least one of j’s
covariates has a reduced form effect on the outcome of i. This identifies a superset of i’s
neighbors such that Ẽi ⊆ CΠ

i and the set of alternative neighbors over which the rank condition
must hold is reduced.

The rank conditions in proposition 4.10 are not directly testable since they depend on the
true neighbors of i, which are unknown. A sufficient condition is that every sub-matrix formed
from each possible set of true and observationally-equivalent neighbors has full rank. This
condition does not depend on the unknown neighbors of i, and is thus testable in principle.
However, there are two practical barriers. First, the problem is combinatoric and therefore
computationally intractable for large N. Second, to conduct such a test one must first estimate
the reduced form parameter matrix Π, which is not sparse.13 This implies that Π is cannot be
accurately estimated when N is large relative to T, as is typical in applications.

If the network is observed, the true and observationally equivalent networks are equal, such
that G = G̃. This implies that we need only consider Ẽi = Ei in which case the rank conditions
in proposition 4.10 are identical to the classical rank condition in lemma 4.8. The following
corollary gives the order conditions for point identification under sparsity.

Corollary 4.11 (Order condition)
The order conditions corresponding to the rank conditions in cases (i) and (ii) of proposition 4.10 are:

(i) |Ei|+ min[si, |E c
i |] ≤

(N−1)
2

(ii) |Ei|+ min[si, |E c
i ∩ CΠ

i |] ≤
(N−1)

2

It follows immediately from lemma 4.8 that the order condition under network observability is
|Ei| ≤ (N − 1)/2. This implies that up to twice as many restrictions are required to account for
the unobserved network. Exactly twice as many restrictions are required if si = |Ei| ≤ |E c

i |, in
which case the left hand side of part (i) of corollary 4.11 is 2|Ei|.

The rank conditions in proposition 4.10 entail restrictions on the network. The following
lemma is useful to relate the rank conditions in proposition 4.10 to the properties of the network
G.

Lemma 4.12 (Rank and vertex-independent paths)
For two subsets of vertices, Vy ⊆ V , Vx ⊆ V , the rank of the sub-matrix of Π with rows Vy and columns
Vx is less than or equal to the number of vertex-independent paths in G from Vx to Vy.

13Assumption 4.6 implies that the rows of Ψ and Γ be sparse. In general, this does not imply that the rows of Π

are sparse.
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Corollary 4.13 uses lemma 4.12 to link the properties of the underlying network to the point
identifiability of the spillovers received by vertex i.

Corollary 4.13 (Vertex-independent paths)
Let Θ ∈ I(s) and let assumptions 4.1 and 4.2 be satisfied.

(i) A necessary condition for the rank condition in part (i) of proposition 4.10 is that for every

Ẽi ∈ {Ẽi : Ẽi ⊆ E c
i , |Ẽi| = min[si, |E c

i |]}, (4.6)

there are |Ei ∪ Ẽi| vertex-independent paths in G from V\{Ei ∪ Ẽi ∪ i} to Ei ∪ Ẽi.

(ii) In addition, let assumption 4.9 be satisfied for vertex i. Then Ci ⊇ CΠ
i ⊇ Ei and a necessary

condition for the rank condition in part (ii) of proposition 4.10 is that for every

Ẽi ∈ {Ẽi : Ẽi ⊆ E c
i , |Ẽi| = min[si, |E c

i |]} ∩ CΠ
i (4.7)

there are |Ei ∪ Ẽi| vertex-independent paths in G from V\{Ei ∪ Ẽi ∪ i} to Ei ∪ Ẽi.

Corollary 4.13 shows that point identification is attainable for networks which are sparse
yet suitably connected. For a given network G and vertex i ∈ V , the identification conditions
in corollary 4.13 may be checked using standard graph theoretic software packages.14 This
is useful so as to gain an understanding of the types of networks for which identification is
possible, even if the network is not observed in practice. Checking part (i) involves verifying
the vertex-independent paths criteria for |E c

i | choose min[si, |E c
i |] sets of feasible neighbors.

Checking part (ii) involves verifying the criteria over |E c
i ∩ CΠ

i | choose min[si, |E c
i ∩ CΠ

i |] sets.
As an example, consider identification of Θ1,· if G is as depicted in figure 2. Suppose

that we apply the sparsity restriction |E1| ≤ 1. The neighbors are E1 = {4}, and the union
of neighbors and observationally equivalent neighbors E1 ∪ Ẽ1 can be {4, 2}, {4, 3}, {4, 5}
or {4, 6}. If E1 ∪ Ẽ1 = {4, 2}, there are two vertex-independent paths in G from {3, 5, 6} to
{2, 4}: (5, {5, 2}, 2) and (6, {6, 4}, 4). By symmetry, the same is true for E1 ∪ Ẽ1 = {4, 3}. If
E1 ∪ Ẽ1 = {4, 5}, there are also 2 vertex independent paths from {2, 3, 6} to {4, 5}: (2, {2, 5}, 5)
and (6, {6, 4}, 4). By symmetry, the same is true for E1 ∪ Ẽ1 = {4, 6}. Hence, the network G
satisfies identification condition in part (i) of corollary 4.13.

4.2. Exclusion Restrictions

This section studies a particular set of exclusion restrictions, which may be natural in some
applications. The next proposition states the main result.

Proposition 4.14 (Identification using exclusion restrictions)
Let Θ ∈ I and let assumptions 4.1 and 4.2 be satisfied. Θ is point identified if there is a covariate
indexed by k ∈ {1, ..., K} such that the corresponding N × N sub-matrix of Γ, denoted Γ(k), is diagonal
and has full rank.

Proposition 4.14 is useful if the researcher knows in advance that covariate k does not gen-
erate contextual effects. Restricting Γ(k) to be diagonal places N(N − 1) exclusion restrictions.

14The Bioinformatics toolbox in MATLAB is useful for this.
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This implies that exogenous variation in X(k)jt may be used as an instrument for Y jt in equation
i 6= j. Proposition 4.14 is useful since the identification result holds for any network governing
the endogenous effects, regardless of its properties.

This approach necessitates that the researcher apply economic theory to specify a covariate
which determines individual outcomes but does not generate contextual effects. This is often
the case in settings where there are vertex-specific determinants of the cost and/or benefit of
the outcome.

4.3. Unobserved Heterogeneity

In this section I study unobserved heterogeneity which may cause the moment condition in
assumption 4.5 to fail. For vertex i in period t, εit may be decomposed as:

εit = αi + νit (4.8)

This specification models unobserved hetereogeneity as an additive function of fixed vertex-
specific heterogeneity and the remaining vertex-period component. No restrictions are placed
on αi, which may be arbitrarily correlated with X, ν and Θ. Applying a transformation to the
baseline model with the error structure in (4.8) yields:

YW = ΨYW + ΓXW + νW (4.9)

where W is any transformation matrix with T rows such that ι′TW = 0. In practice, one
typically uses within-groups, first differences or forward orthogonal deviations.

All of the identification results stated thus far continue to apply if assumption 4.5 is replaced
by the following assumption and the identified set I(s) is modified accordingly.

Assumption 4.15 (Strict exogeneity with unobserved heterogeneity)

E [ν·,t|Z] = 0

Beyond the conditional moment restriction in assumption 4.15, no additional assumptions
on ν are necessary for the purposes of identification. Nevertheless, for the purposes of
estimation, model selection and inference, the next section assumes that νit is i.i.d. over t. This
is to apply the results of Gautier and Tsybakov (2014), and can also be relaxed to an i.n.i.d.
assumption, though for brevity, I do not discuss this further.15

Whilst the i.i.d. assumption may appear quite strong, it places no restrictions on the
cross-sectional correlation in the unobservables. Indeed, it allows for unrestricted dependence
between νit and νjs for j 6= i. This allows for general forms of cross-sectional dependence,
which is more pertinent than temporal dependence in the spillovers setting.

The model of unobserved heterogeneity in (4.8) does not allow for common period level
heterogeneity, in which case (4.8) would include an additional λt term. In this case, the
transformed model is:

VYW = VΨYW + VΓXW + VνW (4.10)

15For details, see section 5 of Gautier and Tsybakov (2014).
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where V is any transformation matrix with N columns such that V ιN = 0. I do not consider this
type of unobserved heterogeneity, since the transformation V is applied to the parameters rather
than the data, which leads to significant complications in the identification and estimation
approach. This type of heterogeneity is permitted in Gautier (2015) and Gautier and Rose
(2016), which are discussed in detail in section 8.

5. Estimation, Model Selection & Inference

The results thus far have studied the role of sparsity in obtaining point identification, through
showing that it may induce an injective mapping from the structural parameters to the reduced
form parameters. In this section, the focus is on exploiting sparsity to address lack of data.
To do this, I apply the STIV estimator of Gautier and Tsybakov (2014). The remainder of this
section demonstrates the approach for the baseline model augmented to include vertex-fixed
effects and transformed according to (4.9).

If T is small relative to N, standard instrumental variables approaches are inapplicable. In
each equation, in the absence of exclusion restrictions there are N − 1 + NK parameters, NL
instruments and T observations. If N − 1 + NK > min(T, NL) or NL > T, the linear systems
on which IV and GMM are based are rank deficient. This is the case if Z = X or if T is small
relative to N. These cases are typical for many applications, including the empirical application
in section 7.

The STIV estimator is applicable in high-dimensional linear settings with many endogenous
covariates and many instruments. The number of regressors and instruments may be large
relative to the sample size. Moreover, it is not necessary to specify which instruments are
excluded from the right hand side in advance, such that X = Z is permitted and no exclusion
restrictions need be made.

The estimator searches for a sparse parameter vector among a ‘small’ set of parameters
which satisfy a relaxation of the sample analogue of the moment condition. The moment
condition is relaxed since attempting to find an exact solution can induce a large error if the
system is rank deficient. For equation i the ‘small’ set is:

Î(rσi) =
{

Θi,· : T−1‖(Y i,· −Ψi,·Y − Γi,·X)WZ′‖∞ ≤ rσi

}
(5.1)

where r > 0 is computed from the data as discussed below and σi is the unknown level of
the noise T−1/2‖(Y i,· − Ψi,·Y − Γi,·X)W‖2. For clarity, I omit the the rescaling of the data in
Gautier and Tsybakov (2014) from the exposition, though it is applied in the simulations and
empirical application.16

The STIV estimator searches for sparse parameter vectors in the set I(rσi) by minimizing a
sparsity inducing criterion. The estimator for (Θi,·, σi) is defined as a solution to the following

16To ensure that the method is invariant to the scale of the data, Gautier and Tsybakov (2014) rescale the data
such that each row of Y , X, Z has `2 norm equal to

√
T.
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conic program:

(Θ̂i·, σ̂i) ∈ arg min
Θi,·∈Î(rσi)

Q̂(Θi,·)≤σ2
i

‖Θi,·‖1 + cσi (5.2)

where c > 0 is a tuning parameter which controls the sparsity and

Q̂(Θi,·) = T−1‖(Y i,· −Ψi,·Y − Γi,·X)W‖2
2 (5.3)

is the noise level.
The estimator penalizes the `1 norm of the parameter vector and the standard deviation of

the disturbances whilst ensuring that any violation of the moment conditions is small. This
leads to a sparse solution which approximately satisfies the moment conditions. To impose
assumptions 4.3 and 4.4, I restrict Ψii = 0 and ∑N

j=1 Ψij ∈ (−1, 1) when estimating equation i.17

It is straightforward to impose exclusion restrictions in a similar manner. I exempt Γii from the
`1 penalty, as it is only the network which is assumed to be sparse.

The value of r is chosen such that

Θi,· ∈ Î
(

r
√

Q̂(Θi,·)

)
∀i ∈ V (5.4)

with probability at least 1− α for some pre-prescribed α. A reference choice is

r ∼
√

log(NL)
T

(5.5)

To compute r exactly, Gautier and Tsybakov (2014) suggest five different sets of distributional
assumptions covering the i.i.d. case and various i.n.i.d. cases. Each set of distributional
assumptions leads to a different choice of r. Here, I take r equal to the 1− α/N quantile of
T−1|e′WZ|∞, where e ∼ N (0, IT).18 This statistic is straightforward to compute by simulation.
This choice is based on corollary 2.1 in Chernozhukov et al. (2013) and delivers

P

(
Θi,· ∈ Î

(
r
√

Q̂(Θi,·)

)
∀i ∈ V

)
≥ 1− α (5.6)

asymptotically as N, T → ∞ under the following assumption:

Assumption 5.1 (Data generating process)
The disturbances νit are i.i.d. over t with bounded fourth moments, the transformed instruments
(ZW)·,t are bounded and independent of νit and there exist BT and constants C̄ > 0 and c̄ > 0 such
that B4

T log(NLT)7/T ≤ C̄T−c̄.

Choosing r in this way allows for unrestricted correlation of νit with νjs for j 6= i. In
addition, it allows for heteroskedasticity of the form E

[
ν2

it
]
= σ2

i . It does, however, rule out

17The linear restriction ∑N
j=1 Ψij ∈ (−1, 1) ∀i ∈ V is sufficient for det(IN −Ψ) 6= 0 due to diagonal dominance.

It is convenient since it preserves the convexity of the optimization problem and does not involve cross-equation
restrictions.

18I use the 1− α/N quantile to guarantee a joint confidence level of 1− α using a union bound. This is because
we wish to control the probability of the intersection of N dependent events.
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serial correlation in νit and time varying heteroskedasticity. In principle it is feasible to relax
independence over t using notions of weak dependence. This would result in a larger value of
r.

Under assumption 5.1 and an identifiability assumption,19 for c ∈ (0, 1/r) and fixed K and
L, Gautier and Tsybakov (2014) show that:

‖Θi,· − Θ̂i,·‖2 ≤ O
(√
|Ei| log(N)/T

)
(5.7)

with probability at least 1− α. This means that even though the dimension of Θi,· is linear in
N, under sparsity, the rate depends only on |Ei| log(N), which can be much smaller than N. In
particular, consistency requires |Ei| log(N)/T → 0, which can be achieved even as N/T → ∞.

Gautier and Tsybakov (2014) also derive model selection results. Under the same assump-
tions as for the rate, and an additional assumption that the absolute values of the nonzero
components of Θi,· are sufficiently large (see theorem 7.1 (iii)), it can also be shown that the
estimated set of neighbors

Êi =
{

j ∈ V : j 6= i, ψ̂ij 6= 0 or γ̂ij 6= 0
}

(5.8)

is a superset of Ei with high probability. Under a stronger assumption on the size of the
spillovers (see assumption 8.1 and theorem 8.1), one obtains ˇ̂Ei = Ei with high probability,
where

ˇ̂Ei =
{

j ∈ V : j 6= i, |ψ̂ij| > ω
ψ
ij or |γ̂ij| > ω

γ
ij

}
(5.9)

is a thresholded estimator and ω
ψ
ij , ω

γ
ij are thresholds computed from the data. Consequently,

by applying the STIV estimator one can exactly recover the true network provided that the
spillovers are sufficiently large.

The inference procedure of Gautier and Tsybakov (2014) is based on (5.6). It applies equally
under point identification, partial identification and non-identification and is uniform over the
class of data generating processes compatible with assumption 5.1. Robustness to identification
implies that the confidence sets may have infinite volume if there is insufficient sparsity, and/or
the instruments are weak.

6. Simulations

This section studies the performance of the method for realistic data generating processes. The
exposition focuses on estimation and model selection. This is because the confidence sets are
too large to be informative, an issue which is discussed in detail in section 8.

To generate the data, I set N = 100, K = 1 and generate a random directed network with
adjacency matrix G, where all edges are i.i.d. with link probability p and there are no edges
from a vertex to itself. I then take every row of G with at least one nonzero entry, and rescale
so that the elements sum to one. This implies that the rows of G sum to zero or one, which is

19A precise statement of the identifiability assumption requires a significant amount of additional notation. It is
stated in assumption 7.1 of Gautier and Tsybakov (2014).
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a common assumption in the social effects literature (see, for example, Blume et al. (2015) or
de Paula et al. (2016)). I study two cases: one in which the network is fixed over the data sets,
and another in which the network is redrawn in each dataset.

I set Ψ = 0.5G and Γ = −2(G + IN). This specification implies that for those vertices which
are not isolated, the outcomes depend on the mean outcome of their neighbors, the mean
covariate of their neighbors and their own covariate with respective weights 0.5, −2 and −2.

I let X it follow a multivariate normal distribution, with E[X it] = 0 for every i and t and

COV[X it, X js] =



1 if i = j and s = t

ρ/N if i 6= j and s = t

ρ if i = j and |s− t| = 1

0 otherwise

(6.1)

I let εit = αi + νit, where αi = 1 + T−1 ∑T
t=1 X it and νit follows a multivariate normal distribu-

tion (independent of X) with E[νit] = 0 for every i and t and

COV[νit, νjs] =


1 if i = j and s = t

ρ/N if i 6= j and s = t

0 otherwise

(6.2)

I set ρ = 0.5 to allow for moderate dependence in the data and apply the within-groups
transformation W = IT − ιTι′T/T, leading to the outcome equation in (4.9). The instruments
are Z = X. The design implies that the number of parameters in each equation is 2N− 1 = 199,
and the number of instruments is N = 100. Since there are more parameters than instruments,
conventional instrumental variables estimation is inapplicable.

To vary the sample size and sparsity, I study each configuration over (T, p) ∈
{50, 100, 200, 500} × {1/N, log(N)/N}. The values for T span the cases where the number
of observations is much less than, approximately equal to, and greater than the number of
parameters. For T = 50, the number of instruments is also much greater than the sample size.
The choice of p = log(N)/N coincides with the asymptotic threshold for strong connectedness
of directed random graphs.

For each configuration, I apply the STIV estimator with c = 0.99/r. For comparison, I
also compute the infeasible 2SLS estimator based on the true network for configurations with
T ≥ 100.20 I do this for 1000 data sets, over which I compute percentiles of the statistics
reported below.

6.1. Results for a Fixed Network

This sub-section presents estimation results for a specific network, which is held fixed over
the data sets. The true parameters are depicted in figure 3. For p = 1/N, each vertex has
around 1 neighbor on average, with a maximum of 5 and a minimum of 0. For p = log(N)/N,

20Applicability of the 2SLS estimator requires that the number of instruments N = 100 does not exceed the
sample size T.
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each vertex has around 5 neighbors on average, with a maximum of 12 and a minimum of 0.
These choices imply that the number of nonzero parameters in each equation is at most 11 for
p = 1/N and 25 for p = log(N)/N. Both networks satisfy the identification condition in part
(i) of corollary 4.13.

Figure 3: Ψ and Γ with edge probabilities 1/N and log(N)/N
* (p = 1=N )
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Notes: Ψ and Γ are generated as follows. First, generate the N × N adjacency matrix G of a random graph with
i.i.d. edge probability p. Next, rescale the nonzero rows of G to sum to 1 and specify Ψ = 0.5G and
Γ = −2(G + IN). For clarity of presentation the vertices are reordered to concentrate the mass around the 45
degree line.

Figures 8-15 in the appendix depict percentiles of the point estimates and estimation errors
over the configurations. The performance of the estimator depends on the sample size and the
sparsity in the expected way. When the sample size is small or the network is dense, the `1

penalty in the estimator leads to greater shrinkage, and hence median point estimates for the
nonzero parameters are closer to zero. As the sample size or sparsity increase, median point
estimates for the nonzero parameters move closer to their true values. For p = 1/N, aside from
the shrinkage, the estimator performs reasonably well in terms of the signs and locations of
edges even when T = 100 or T = 50. This is not the case for p = log(N)/N.

6.2. Results for Random Networks

In this sub-section, the network is redrawn for every data set. This ensures that the results are
not driven by any particular choice of network. Table 1 summarizes the model selection results
over the configurations. For each data set, I compute the proportion of parameters which are
correctly and incorrectly selected, and take percentiles of these statistics over all of the data
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sets. I exclude the diagonal elements of Γ as these are exempt from the `1 penalty.

Table 1: Percentiles of selection frequencies

p = 1/N p = log(N)/N
Percentile Θ̂ij 6= 0|Θij 6= 0 Θ̂ij 6= 0|Θij = 0 Θ̂ij 6= 0|Θij 6= 0 Θ̂ij 6= 0|Θij = 0

05 0.98 0.00 0.93 0.00
T = 500 50 0.99 0.00 0.95 0.01

95 0.99 0.00 0.97 0.01
05 0.97 0.00 0.77 0.00

T = 200 50 0.99 0.00 0.81 0.01
95 0.99 0.00 0.84 0.01
05 0.92 0.00 0.53 0.00

T = 100 50 0.96 0.00 0.58 0.01
95 0.98 0.00 0.63 0.01
05 0.77 0.00 0.28 0.00

T = 50 50 0.85 0.00 0.32 0.00
95 0.90 0.00 0.37 0.01

Notes: The STIV estimator is applied with c = 0.99/r. The Θ̂ij 6= 0|Θij 6= 0 column reports the selection frequency

of the nonzero spillover parameters
(

∑i,j 6=i+N 1
Θ̂ij 6=0,Θij 6=0

)
/
(

∑i,j 6=i+N 1Θij 6=0

)
. The Θ̂ij 6= 0|Θij = 0 column

reports the selection frequency of the nonzero parameters
(

∑i,j 6=i+N 1
Θ̂ij 6=0,Θij=0

)
/
(

∑i,j 6=i+N 1Θij=0

)
. The

condition j 6= i + N is included in the sum to ignore the diagonal elements of Γ, which are exempt from the `1
penalty. Percentiles are taken over 1000 simulations.

Model selection performance depends on the sample size and the sparsity in the expected
way. For T = 500 and p = 1/N, the nonzero parameters are selected with very high frequency,
the median of which is 0.99. As the sample size decreases, the frequency of correct selection
falls, though it remains at 0.96 for T = 100 and 0.85 for T = 50. For p = log(N)/N, the
frequency of correct selection is lower than for p = 1/N for every sample size. Its median falls
from 0.95 for T = 500 to 0.32 for T=50. Across all configurations, the frequency of incorrect
selection is close to zero.

Table 2 reports percentiles of the estimation errors for the low dimensional parameters

Ψ̄ = N−1 ∑
i,j 6=i

Ψij (6.3)

Γ̄ = N−1 ∑
i,j 6=i

Γij (6.4)

∆̄ = N−1 ∑
i

Γii (6.5)

which are the main quantities of interest in Manski (1993); Moffitt (2001); Lee (2007); Davezies
et al. (2009); Bramoullé et al. (2009); Blume et al. (2015); Lam and Souza (2013); Manresa (2014)
and de Paula et al. (2016). The true values vary in each data set due to redrawing of the
network. For this reason, table 2 reports estimation errors standardized by the true value.
Shrinkage leads point estimates of Ψ̄ and Γ̄ to be too small in absolute value in all specifications.
The shrinkage declines as the number of observations and sparsity increases, and is larger for Γ̄

than for Ψ̄. The parameter ∆̄ is precisely estimated across all configurations. This is most likely
because there is no model selection uncertainty around the diagonal elements of Γ, which are
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exempt from the penalty.

Table 2: Percentiles of the estimation error of low dimensional parameters

p = 1/N p = log(N)/N

Percentile
̂̄Ψ−Ψ̄

Ψ̄

̂̄Γ−Γ̄
Γ̄

̂̄∆−∆̄
∆̄

̂̄Ψ−Ψ̄
Ψ̄

̂̄Γ−Γ̄
Γ̄

̂̄∆−∆̄
∆̄

05 -0.08 -0.12 -0.02 -0.07 -0.40 -0.01
T = 500 50 -0.06 -0.09 -0.01 -0.05 -0.36 0.00

95 -0.04 -0.08 -0.01 -0.02 -0.32 0.00
05 -0.17 -0.18 -0.01 -0.22 -0.59 -0.01

T = 200 50 -0.13 -0.14 0.00 -0.15 -0.55 0.00
95 -0.09 -0.12 0.01 -0.12 -0.50 0.01
05 -0.27 -0.27 -0.01 -0.47 -0.76 0.00

T = 100 50 -0.22 -0.22 0.00 -0.37 -0.71 0.01
95 -0.17 -0.18 0.01 -0.28 -0.67 0.03
05 -0.46 -0.43 -0.01 -0.76 -0.89 0.00

T = 50 50 -0.36 -0.37 0.00 -0.66 -0.85 0.03
95 -0.29 -0.31 0.03 -0.53 -0.82 0.05

Notes: The STIV estimator is applied with c = 0.99/r. The ̂̄Ψ and ̂̄Γ columns report N−1 ∑i,j 6=i Ψ̂ij and

N−1 ∑i,j 6=i Γ̂ij. The ̂̄∆ column reports N−1 ∑i Γ̂ii. Percentiles are taken over 1000 simulations.

Table 3 reports percentiles of the standardized `2 estimation error for the STIV estimator
and the infeasible 2SLS estimator of the nonzero spillovers based on the true network. This
comparison is useful to quantify the loss in performance attributable to non-observability of
the network. The loss is relatively mild for moderate to large sample sizes and high sparsity,
but can be large if there is insufficient sparsity or the sample is too small. For T ≥ 200 and
p = 1/N, the STIV estimator performs almost as well as the infeasible 2SLS estimator. The
performance gap widens as T decreases and as the sparsity decreases.

Table 3: Percentiles of the `2 estimation error for the STIV and infeasible 2SLS estimators

p = 1/N p = log(N)/N

Percentile ‖Θ̂−Θ‖2
‖Θ‖2

‖Θ̂IV−Θ‖2
‖Θ‖2

‖Θ̂−Θ‖2
‖Θ‖2

‖Θ̂IV−Θ‖2
‖Θ‖2

05 0.06 0.05 0.16 0.08
T = 500 50 0.07 0.06 0.17 0.09

95 0.10 0.13 0.18 0.12
05 0.09 0.06 0.24 0.12

T = 200 50 0.10 0.08 0.25 0.13
95 0.12 0.13 0.27 0.16
05 0.14 0.08 0.32 0.17

T = 100 50 0.15 0.09 0.33 0.18
95 0.18 0.13 0.34 0.21
05 0.22 - 0.39 -

T = 50 50 0.25 - 0.41 -
95 0.28 - 0.42 -

Notes: The STIV estimator is applied with c = 0.99/r. The ‖Θ̂−Θ‖2/‖Θ‖2 column reports the normalized `2
estimation error for the STIV estimator. The ‖Θ̂IV −Θ‖2/‖Θ‖2 column reports the normalized `2 estimation error
for the infeasible 2SLS estimator based on the true network. Percentiles are taken over 1000 simulations.
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7. R&D Spillovers & Product Market Rivalry

R&D spillovers have attracted much attention in the industrial organisation, growth and
productivity literatures over a sustained period of time. R&D investments have two competing
effects on other firms (Bloom et al., 2013). The first is the knowledge spillover effect, through
which R&D investments increase other firms’ productivity.21 The second is the product market
rivalry effect: R&D investments allow firms to steal business from their rivals.

Bloom et al. (2013) argue that separate identification of the two channels is crucial to conduct
welfare analysis and inform policy. The authors’ empirical analysis uses measures of firms’
positions in technology and product market space, which are constructed using information on
the distribution of patenting over technology classes and sales over four digit industry codes.
This approach permits estimation of panel regression models with spillover effects. The central
result is that both channels are non-negligible and knowledge spillovers dominate product
market rivalry. This implies that the social returns to R&D are larger than the private returns,
and hence that R&D stocks are below the social optimum.

König et al. (2014) apply a structural framework to study R&D spillovers in a Cournot
oligopoly. The authors specify a game in which firms simultaneously choose R&D invest-
ments and output given the product market competition and R&D networks, characterise an
equilibrium and conduct welfare analysis. The networks are constructed using data on R&D
partnerships and industry codes.

The remainder of this section applies the methods developed in this paper to study R&D
spillovers in a Cournot oligopoly similar to that of König et al. (2014). The novelty lies in
estimating the structure of firm interactions, rather than imposing it. This implies that the
results are robust to misspecification of the networks, and permits the analysis of the identities
and types of firms which send and receive spillovers.

7.1. Model

There are N firms which make R&D investment decisions and compete on the product market.
Firms maximize the stream of expected, discounted future profits. In period t, firm i has a
Cobb-Douglas production function of the form:

qit = ∑
j∈Ei

µijrdjt + µiirdit + αilit + βikit + η
q
it (7.1)

where qit is log output, lit is log labor, kit is log capital and rdit is the log R&D stock, which
is determined by firms’ R&D investments.22 Technology spillovers are incorporated through
allowing the R&D stocks of other firms to enter the production function through the network
G. For log wage wit and log rental rate of capital rit, the log total cost is:

tcit =
qit −∑j∈E µijrdjt − µiirdit + αiwit + βirit − η

q
it

αi + βi
+ ln

( αi

βi

) βi
αi+βi

+

(
βi
αi

) αi
αi+βi

 (7.2)

21As in Bloom et al. (2013); König et al. (2014), I consider a setting in which R&D increases productivity. In some
settings it may be more appropriate to suppose that R&D investments increase demand.

22For a description of the R&D accumulation process, see equation (7.8) and the discussion thereunder.
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In each period firms engage in Cournot competition on the product market. The inverse
demand function takes the form:

pit = ∑
j∈Ei

κijqjt + κiiqit + η
p
it (7.3)

where pit is the log price. For each firm to have a unique best response function, it is necessary
to assume that there are constant returns to labor and capital (βi + αi = 1 ∀i ∈ V) and that
the own-price elasticity of demand is nonzero (κii < 0 ∀i ∈ V). Under these assumptions, it is
straightforward to show that the Cournot best response function is:

qit =

(
∑
j∈Ei

Ψijqjt + Γijrdjt

)
+ Γiirdit + τit (7.4)

where Ψij = −κij/κii, Γij = −µij/κii and:

τit = −
1 + κii + ln

((
αi

1−αi

)1−αi
+
(

1−αi
αi

)αi
)

κii
+

αiwit + (1− αi)rit − η
p
it − η

q
it

κii
(7.5)

One can then decompose the log wage wit = φw
i + νw

it and similarly for the log rental rate rit

and the productivity and demand shocks η
q
it and η

p
it, yielding:

qit =

(
∑
j∈Ei

Ψijqjt + Γijrdjt

)
+ Γiirdit + φi + νit (7.6)

To transform out the fixed effects, I use forward orthogonal deviations for W , and estimate:

qW = ΨqW + ΓrdW + νW (7.7)

7.2. Instrumental Variables

Following Bloom et al. (2013), the R&D stocks are assumed to be determined by the capital
accumulation process:

RDit = (1− δ)RDit−1 + Iit (7.8)

where RDit is R&D stock, Iit is R&D investment and δ is the depreciation rate. Since firms
endogenously allocate R&D investments to maximise expected future profits, the R&D stocks
are endogenous. In order to identify the parameters of the best response function, it is necessary
to specify instrumental variables.

Due to the capital formation process (7.8), candidate instruments are current and past
values of any covariate which determines the cost of R&D investment, as well as lags of the
R&D stock. Following Bloom et al. (2013), I use tax induced changes to the cost of R&D.23

The tax price component of the cost of R&D for firm i in state s in period t is given by
ρit = (1− Dit) / (1− τst) where Dit is the discounted value of R&D tax credits and τst is the

23Full details of this approach can be found in Appendix B.3 of Bloom et al. (2013).
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rate of corporation tax. If ρit = 1, R&D is tax neutral, whilst ρit < 1 implies that there are tax
incentives for R&D.

The tax component varies at the firm-year level for two reasons, each of which can be
exploited to specify instruments. First, firms typically conduct R&D across many states, each
with different R&D tax credits and rates of corporation tax. Since firms have differential
distributions of R&D activity over states, changes to tax credits or corporation taxes have
heterogeneous impacts across firms. Using the distribution of R&D activity over states, Bloom
et al. (2013) construct a firm-specific measure of the ‘state tax credit component’, which is
adopted here. Second, the federal rules pertaining to what type of activity is permissible for
R&D tax credits depend on a firm-specific base level, which is determined by the firm’s past
R&D investments. Bloom et al. (2013) construct a firm-specific measure of the ‘federal tax credit
component’ based on these rules, which is also adopted here.

Due to the capital formation process (7.8), one may also use lags of the log R&D stock as
instruments for its present value. This is possible owing to the use of forward orthogonal
deviations in transforming the model. One then requires that the log R&D stock be uncorrelated
with the future disturbances. In addition to the tax based instruments, I also use the first lag of
the log R&D stock as an instrument, and construct the 5× 1 vector of instrumental variables
Zit from the natural logarithms of the period t and t− 1 measures of state and federal tax
credits for firm i and the period t− 1 R&D stock for firm i.

A potential concern related to the instruments is that tax policy may be endogenously
determined based on macroeconomic conditions. Bloom et al. (2013) argue that there is
a substantial degree of randomness in R&D tax credits and find that past changes in R&D
expenditures and GDP do not have a statistically significant association with policy. In addition,
under the forward orthogonal deviations transformation, we require only that current and past
tax credits be uncorrelated with the current and future disturbances.

7.3. Data

The data are identical to Bloom et al. (2013). I obtain firm level accounting data from the U.S.
COMPUSTAT 1980-2001 and match it to the U.S. Patent and Trademark Office data available
through the NBER. All variables are deflated to 1996 values using the CPI.

R&D investments are observed directly, whilst the R&D stock is calculated using the
perpetual inventory method described in Bloom et al. (2013). The perpetual inventory method
uses equation (7.8) and assumes that in the first period each firms’ stock of knowledge is at
the steady-state level K1 =

(
1

δ+g

)
I1 where g is the steady-state growth rate in the R&D stock.

The values δ = 0.15 and g = 0.05 in Bloom et al. (2013) are adopted here. The R&D stock in
subsequent periods evolves according to (7.8).

Output is measured by deflating sales using the industry price index,24 and the measures
of state and federal tax credits for R&D are constructed in an identical manner to Bloom et al.
(2013). To prevent the number of firms becoming too large relative to the number of years, I
use data for a single industry defined by the two digit SIC code for electronics (36). I focus on

24A lack of firm-specific prices leads to measurement error in output. Bloom et al. (2013) argue that this is
unlikely to be severe.
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electronics because there is significant scope for R&D spillovers and the number of firms is not
too large relative to the number of observations.

The sample for the electronics industry comprises all firms which have a positive R&D stock
over the sample period, yielding a balanced panel of 26 firms observed over 21 years. These
firms are inherently large and conduct a significant amount of research. Table 4 summarizes
the data.

Table 4: Summary statistics for the electronics industry from 1980-2001

Variable Symbol Units Mean St.Dev. Min. Max.
Real sales Qit Million 1996 $ 2254.51 5235.58 20.79 39725.64
Real R&D investments Iit Million 1996 $ 186.86 548.19 1.00 4769.00
Real R&D stock RDit Million 1996 $ 869.70 2123.73 3.21 17770.88
State tax credit TX1it - 1.28 0.12 1.10 1.51
Federal tax credit TX2it - 0.95 0.07 0.58 1.23
N 26
T 21

Notes: The sample comprises 26 firms in the electronics industry observed annually between 1981 and 2001. For
the state and federal tax credits, a value of 1 implies that R&D investments are tax neutral, and values less than 1
imply that there are tax incentives for R&D investment.

Due to the high-dimensional setting, the usual first stage statistics for weak identification
cannot be computed. Instead, to verify that the instruments are strong predictors of the log
R&D stock, I regress the log R&D stock of each firm on its own log tax credit measures
and their first lag, and the first lag of its own log R&D stock. That is, I regress rdit on
Zit = (tx1it, tx2it, tx1it−1, tx2it−1, rdit−1)

′ for each i ∈ {1, ..., N}. The F-statistics associated with
these regressions are large. The median F-statistic over the N regressions is 233.44, and the
minimum is 5.42. The associated p-values for the null hypothesis that the instruments do not
predict the log R&D stock are small, with the largest equal to 0.01. The tax credits instruments
are not redundant: even if the t− 1 log R&D stock is omitted from the right hand side, the
instruments remain strong predictors of the log R&D stock, with a median F-statistic of 8.78.

7.4. Results

The transformed Cournot best response function (7.7) is estimated using the STIV estimator
with c = 0.99/r under the restrictions Ψ ≤ 0 and Γ ≥ 0.25 The exposition focuses on
estimation and model selection. This is because confidence sets are too large to be informative,
which is discussed in detail in section 8. The lack of informative inference implies that point
estimates ought to be interpreted with caution, and ought not to be used for policy purposes.
Nevertheless, the simulation results in section 6 demonstrate that the point estimates may be
relatively reliable provided that there is sufficient sparsity, though they are also likely to be too
small in magnitude. Moreover, the estimator may fail to select spillovers which are not large

25In the absence of sign restrictions, the majority of the estimated spillovers are correctly signed. However, one
large negative estimated R&D spillover has a large impact on the welfare analysis. For this reason, I present results
under sign restrictions.
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enough. For this reason, the parameter estimates in this section should be interpreted as lower
bounds on the extensive and intensive margins of the effects.

Figure 4: Estimated product market competition and R&D elasticities in the electronics industry
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Notes: Point estimates are for the STIV estimator of (7.7) with c = 0.99/r. The sample comprises 26 firms in the
electronics industry observed annually between 1981 and 2001. Instruments are the logs of the current tax credits
and the first lag of the log R&D stock. The forward orthogonal deviations transformation is applied to remove the
firm fixed-effects. Firms are ordered by size, which is measured by total real sales over the sample period.

Figure 4 shows point estimates of the parameters for (7.7). All variables are in natural
logarithms, hence parameters may be interpreted as elasticities. On each axis, firms are ordered
by size, which I measure by total real sales over the sample period. The mass of R&D spillovers
is concentrated on the right hand side of the plot. This means that R&D spillovers are sent
predominantly by large firms and received by both large and small firms. Bloom et al. (2013)
also find that large firms send more R&D spillovers than small firms. This is because large
firms conduct R&D over a relatively broad range of technology classes, and are hence centrally
located in the technology network which the authors construct.

There are few nonzero point estimates for the product market competition parameters.
This could be due to the relatively small sample size, and/or because few firms exert large
competitive pressure on one another. In any case, the estimates of R&D spillovers are larger
and more frequently nonzero than those of the product market competition effect, which was
also concluded by Bloom et al. (2013).

Table 5 summarizes the magnitudes and selection frequencies of the estimated output
elasticities with respect to own R&D, other firms’ R&D and other firms’ output. The ‘Own
R&D’ row summarizes the elasticity of real output with respect to a firm’s own R&D stock. A
10% increase in a firms’ R&D stock typically leads to a 7.8% increase in real output.

The ‘Extensive margin of R&D spillovers’ and ‘Intensive margin of R&D spillovers’ rows
summarize the frequency and magnitudes of the elasticities with respect to other firms’ R&D
stocks. Around 11% of possible R&D spillovers are estimated to be nonzero. On average, a
10% increase in a neighbor’s R&D stock leads to a 4.5% increase in real output. These numbers
suggest that R&D spillovers are large, though a firm’s own R&D stock has a greater impact on
its productivity than the R&D stock of one of its neighbors.
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Table 5: Estimated elasticities of real output and spillovers in the electronics industry

Description Definition (7.7)

Own R&D ∑i −µii/κii
N 0.7828

Extensive margin of R&D spillovers
∑i,j 6=i 1|µij/κii |6=0

N(N−1) 0.1169

Intensive margin of R&D spillovers
∑i,j 6=i −µij/κii

∑i,j 6=i 1|µij/κii |6=0
0.4496

Extensive margin of product market competition
∑i,j 6=i 1|κij/κii |6=0

N(N−1) 0.0262

Intensive margin of product market competition ∑i,j 6=i −κij/κii

∑i,j 6=i 1|κij/κii |6=0
-0.1320

Notes: Point estimates are for the STIV estimator of (7.7) with c = 0.99/r. The sample comprises 26 firms in the
electronics industry observed annually between 1981 and 2001. Instruments are the logs of the current tax credits
and the first lag of the log R&D stock.

The ‘Extensive margin of product market competition’ and ‘Intensive margin of product
market competition’ rows summarize the frequency and magnitudes of the elasticities with
respect to other firms’ real output. Around 3% of possible competitive relationships are
estimated to be nonzero. On average, a 10% increase in the real output of a neighbor leads to
a 1.3% decrease in real output. These numbers appear to suggest that there is weak product
market competition in the electronics industry. However, due to the small sample size and the
shrinkage applied by the estimator, it is likely that the estimated elasticities are biased towards
zero.

7.5. Welfare

The remainder of this section uses parameter estimates to conduct welfare analyses. Following
Bloom et al. (2013), the marginal private return and marginal social return for firm i in period t
are defined as the increase in private and aggregate output attributed to a marginal increase in
firm i’s period t stock of R&D:

MPRit =
ΠiiQit
RDit

(7.9)

MSRit =
∑N

j=1 ΠijQjt

RDit
(7.10)

These can be estimated for any firm-year pair using the data and parameter estimates. From a
welfare perspective, there is underinvestment in R&D if the marginal social return exceeds the
marginal private return. The signs of the elements of Π depend on which spillover is dominant.
This implies that the social return may be larger than, equal to or smaller than the private
return. It is worth pointing out that the high-dimensional setting implies that the estimated
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welfare effects are likely to be imprecise, particularly since the confidence sets for the estimated
parameters are too wide to be informative. Nevertheless, the analysis may be useful to give
some indication of the optimality of R&D stocks from a welfare perspective.

Figure 5: Ratio of marginal social and private returns to R&D for the median firm in the electronics industry
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Notes: The figure depicts the estimated ratio of the private and social returns to R&D for the median firm from
1981 to 2001. For the blue line, the ratio for any firm-year pair is estimated based on (7.9) and (7.10), replacing Π

with Π̂. For the red line, the ratio is based on replacing Π with Γ̂. For the green line, the ratio is based on replacing
Π with (IN − Ψ̂)−1diag(Γ̂).

Figure 5 depicts the estimated the ratio of marginal social returns and marginal private
returns for the median firm over the sample period. The blue line shows this statistic when
both channels are active, whereas for the red line product market rivalry is deactivated, and
for the green line the R&D spillover effect is deactivated.

Looking first at the case where both channels are active, the estimated ratio is larger than 1
in every year. This suggests that the technology spillover effect dominates the product market
rivalry effect and is indicative of underinvestment in R&D. The ratio is relatively stable at
around 1.02 from 1981 to 1999 before rising in 2000 and 2001. Bloom et al. (2013) also find
that there is underinvestment in R&D, and estimate the median ratio of the private and social
returns over all firm year pairs as 2.76, which is much larger than the ratios depicted in figure
5. This difference may indicate that levels of R&D in the electronics industry are closer to the
social optimum than in the other industries included in the analysis of Bloom et al. (2013).
Additionally, the shrinkage applied by the estimator may have lead the point estimates to be
too small in magnitude, which could equally account for the difference.
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Looking next at the case where there are only R&D spillovers, the ratio is around 1.06.
Finally, looking at the case where there is only product market rivalry, the ratio is 1 in every
year for the median firm. In order to better undestand the variation over the distribution, figure
6 depicts the 10th, and 15th and 20th percentiles. The 10th and 15th percentiles are less than 1 in
every year, and have both declined over the sample period. The 20th percentile is 1 in every
year.

Figure 6: Ratio of marginal social and private returns to R&D attributable to product market rivalry
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Notes: The figure depicts percentiles of the estimated ratio of the private and social returns to R&D from 1981 to
2001 attributable to the product market rivalry channel. The ratios are computed using (7.9) and (7.10), replacing Π

with (IN − Ψ̂)−1diag(Γ̂).

8. Conclusion

In this paper, I use panel data to identify and estimate spillover effects when the underlying
network is sparse and unobserved. I show that sparsity restrictions can lead to point iden-
tification if the network is suitably connected and provide identification results for the case
where the researcher has ex-ante knowledge that a given covariate does not generate contextual
effects. I apply the STIV estimator of Gautier and Tsybakov (2014) to conduct estimation and
model selection using simulated data and data for the electronics industry.

In the simulations and application, I find that the confidence sets are too large to be
informative, and sometimes have infinite volume. There are several possible explanations. First,
it may be that the parameters are weakly identified. Second, it may be that the sample sizes are
too small relative to the sparsity. Finally, it may be because the confidence sets are conservative.
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This results from the fact that the confidence sets constructed by Gautier and Tsybakov (2014)
do not use (5.6) directly. This is because

Î
(

r
√

Q̂(Θi,·)

)
(8.1)

is a non-convex set, which introduces computational issues. Instead, Gautier and Tsybakov
(2014) work with a convex superset, which leads to conservative inference.

These issues are addressed in Gautier (2015) and Gautier and Rose (2016). As a possible
remedy to weak identification, these papers allow for additional structure through considering
simultaneous estimation of the system of equations. This permits cross-equation restrictions in
addition to the within-equation restrictions considered here, and also allows for a more general
sparsity assumption, since, rather than placing an upper bound on the in-degree of each vertex
we can instead place an upper bound on the sum of the in-degrees of every vertex.

In addition, Gautier (2015) and Gautier and Rose (2016) allow for a richer specification of
unobserved heterogeneity, in which the disturbance is decomposed as εit = αi + λt + νit and
no assumptions are made on αi nor on λt. This is important, since the λt term is a common
means of representing correlated effects, through which heterogeneity common to all vertices
may be correlated with both their outcomes and characteristics. This type of endogeneity is
particularly pertinent in the spillovers setting (Manski, 1993; Bramoullé et al., 2009).

Gautier (2015) and Gautier and Rose (2016) also allow for arbitrary linear restrictions on
the parameters and restrictions on the sparsity pattern, and develop a new inference procedure
which provides confidence sets for linear functionals of the parameters. This is important, since
although each element of the parameter matrices may be weakly identified, a linear functional
of the parameters, such as the mean entry of Ψ, may not be. This can lead to informative
inference even if T is small relative to N.
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9. Appendix

9.1. Proofs

Proof of lemma 4.7 Fix Θ ∈ I . Under assumption (4.2) the baseline model yields the reduced form
parameter matrix:

Π = E[Y ·,tZ′·,t]E[X ·,tZ′·,t]
′ (E[X ·,tZ′·,t]E[X ·,tZ′·,t]

′)−1
= (IN −Ψ)−1Γ (9.1)

Now consider Θ̃ and suppose that Γ̃ = (IN − Ψ̃)(IN −Ψ)−1Γ. Then we have:

(IN −Ψ)−1Γ = (IN − Ψ̃)−1Γ̃ (9.2)

and Θ 6= Θ̃. �

Proof of lemma 4.8 Fix Θ ∈ I . Under assumption (4.2) the baseline model yields the reduced form
parameter matrix in (9.1). Pre-multiplying (9.1) by (IN −Ψ) yields Π = ΨΠ + Γ. Now, suppose that
there is Θ̃ ∈ I with corresponding network G̃. Then by the same arguments we have Π = Ψ̃Π + Γ̃.
This implies:

ΨΠ + Γ = Ψ̃Π + Γ̃ (9.3)

Looking at the rows:

(Ψi,· − Ψ̃i,·)Π + (Γi,· − Γ̃i,·) = 0 ∀i ∈ V (9.4)

Next consider the sub-vector with elements Xi = V\{Ei ∪ i}:

(Ψi,· − Ψ̃i,·)Π·,Xi + (Γi,Xi − Γ̃i,Xi) = 0 ∀i ∈ V (9.5)

Now, since V\{Ei ∪ i} are non-neighbors of vertex i in G and G̃ = G by assumption, we have
Ψi,Xi = Ψ̃i,Xi = 0, Γi,Xi = Γ̃i,Xi = 0 and Ψii = Ψ̃ii = 0 (by assumption 4.3). Hence:

(Ψi,Ei − Ψ̃i,Ei)ΠEi ,Xi = 0 ∀i ∈ V (9.6)

So Ψi,Ei = Ψ̃i,Ei if ΠEi ,Xi has full row rank, in which case Θi,· = Θ̃i,·. �

Proof of proposition 4.10 Fix Θ ∈ I(s). Under assumption (4.2) the baseline model yields the
reduced form parameter matrix in (9.1). Pre-multiplying (9.1) by (IN −Ψ) yields Π = ΨΠ + Γ. Now,
suppose that there is Θ̃ ∈ I(s) with corresponding network G̃. Then by the same arguments we have
Π = Ψ̃Π + Γ̃. Hence:

ΨΠ + Γ = Ψ̃Π + Γ̃ (9.7)
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Looking at the rows:

(Ψi,· − Ψ̃i,·)Π + (Γi,· − Γ̃i,·) = 0 ∀i ∈ V (9.8)

Next consider the sub-vector with elements Xi = V\{Ei ∪ Ẽi ∪ i}:

(Ψi,· − Ψ̃i,·)Π·,Xi + (Γi,Xi − Γ̃i,Xi) = 0 ∀i ∈ V (9.9)

Now, since V\{Ei ∪ Ẽi ∪ i} are non-neighbors of vertex i in G and G̃, we have Ψi,Xi = Ψ̃i,Xi = 0,
Γi,Xi = Γ̃i,Xi = 0 and Ψii = Ψ̃ii = 0 (by assumption 4.3). Hence, for Yi = Ei ∪ Ẽi:

(Ψi,Yi − Ψ̃i,Yi)ΠYi ,Xi = 0 ∀i ∈ V (9.10)

Suppose that ΠYi ,Xi has full row rank. This implies Ψi,Yi = Ψ̃i,Yi , in which case Θi,· = Θ̃i,·. Finally,
note that it is only necessary to consider:

Ẽi ∈ {Ẽi : Ẽi ⊆ E c
i , |Ẽi| = min[si, |E c

i |]} (9.11)

which lead to sub-matrices with the maximal number of rows and minimal number of columns. This
proves part (i).

To prove part (ii), it is sufficient to note that assumption 4.9 implies C ⊇ CΠ ⊇ E and hence
C̃ ⊇ CΠ ⊇ Ẽ . �

Proof of lemma 4.12 Let ΠVy,Vx sub-matrix of Π with rows Vy and columns Vx. Suppose that
there are v ≤ min

[
|Vy|, |Vx|

]
vertex-independent paths in G from Vx to Vy. Then one of the

following is true:

1. ΠVy,Vx has at least |Vy| − v rows of zeros.

2. ΠVy,Vx has at least |Vy| − v linearly dependent rows.

In either case, rank
(

ΠVy,Vx

)
≤ min

[
|Vy|, |Vx|

]
−
(
|Vy| − v

)
≤ v. �

Proof of proposition 4.14 Fix Θ ∈ I . Under assumption (4.2) the baseline model yields the reduced
form parameter matrix in (9.1). The N × N sub-matrix of Π corresponding to covariate k is Π(k) =

(IN −Ψ)−1Γ(k). If Γ(k) is diagonal with rank N, Π(k) is invertible and:

(Π−1)(k)ii = 1/Γ(k)ii ∀i ∈ V (9.12)

(Π−1)(k)ij = −Ψ(k)ij/Γ(k)ii ∀i, j 6= i ∈ V2 (9.13)

Now suppose that there is Θ̃ ∈ I and Γ̃(k) is diagonal with rank N. Then Π = (IN − Ψ̃)−1Γ̃ and:

1/Γ(k)ii = 1/Γ̃(k)ii ∀i ∈ V (9.14)

−Ψij/Γ(k)ii = −Ψ̃ij/Γ̃(k)ii ∀i, j 6= i ∈ V2 (9.15)
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Solving yields Ψ̃ = Ψ, Γ̃(k) = Γ(k), which implies Γ̃ = Γ. �

9.2. Identification under sparsity for general K

The following additional notation is required to extend the results of sub-section 4.1 to K > 1.
First, the observable connectivity is generalized as follows:

CΠ = {(j, i) : ∃k ∈ {1, ..., K}, Π(k)ij 6= 0} (9.16)

where Π(k) is the N × N reduced form parameter matrix for covariate k. Proposition 4.10
generalizes as follows:

Proposition 9.1 (Identification under sparsity)
Let Θ ∈ I(s) and let assumptions 4.1 and 4.2 be satisfied.

(i) Θi,· is point identified if for every

Ẽi ∈ {Ẽi : Ẽi ⊆ E c
i , |Ẽi| = min[si, |E c

i |]}, (9.17)

the sub-matrix of Π with rows Ei ∪ Ẽi and the columns corresponding to the covariates of
V\{Ei ∪ Ẽi ∪ i} has full row rank.

(ii) In addition, let assumption 4.9 be satisfied for vertex i. Then Ci ⊇ CΠ
i ⊇ Ei and part (i) applies

with (9.17) replaced by

Ẽi ∈ {Ẽi : Ẽi ⊆ E c
i , |Ẽi| = min[si, |E c

i |]} ∩ CΠ
i (9.18)

The only difference from proposition 4.10 is that in part (i) the columns correspond to all of
the covariates of V\{Ei ∪ Ẽi ∪ i}. For K = 1, these are columns V\{Ei ∪ Ẽi ∪ i}, whereas for
general K we require columns V\{Ei ∪ Ẽi ∪ i}, N +V\{Ei ∪ Ẽi ∪ i}, ..., N(K− 1)+V\{Ei ∪ Ẽi ∪ i},
where the addition is applied to every element in the set. The order condition in corollary 4.11
generalizes as follows:

Corollary 9.2 (Order condition)
The order conditions corresponding to the rank conditions in cases (i) and (ii) of proposition 4.10 are:

(i) |Ei|+ min[si, |E c
i |] ≤

K(N−1)
1+K

(ii) |Ei|+ min[si, |E c
i ∩ CΠ

i |] ≤
K(N−1)

1+K

To extend the result on vertex-independent paths in corollary 4.13, we must first define a new
network which relates the covariates to the outcomes. First, define the network Gyx = (Vyx, Eyx),
which represents the system of equations in (3.1). The set of vertices is:

Vyx =
{

y1, ..., yN , x(1)1, ..., x(1)N , ..., x(K)N

}
(9.19)

and the set of edges Eyx is uniquely determined by K and G, such that (j, i) ∈ E ⇐⇒ (yj, yi) ∈
Eyx and (j, i) ∈ E ⇐⇒ (x(k)j, yi) ∈ Eyx ∀k ∈ {1, ..., K}. An example of G and Gyx is depicted
in figure 7.
Using the network Gyx, the result is:

34



Figure 7: An example of G and Gyx
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Corollary 9.3 (Vertex-independent paths)
Let Θ ∈ I(s) and let assumptions 4.1 and 4.2 be satisfied.

(i) A necessary condition for the rank condition in part (i) of proposition 9.1 is that for every

Ẽi ∈ {Ẽi : Ẽi ⊆ E c
i , |Ẽi| = min[si, |E c

i |]}, (9.20)

there are |Ei ∪ Ẽi| vertex-independent paths in Gyx from the covariates of V\{Ei ∪ Ẽi ∪ i} to the
outcomes of Ei ∪ Ẽi.

(ii) In addition, let assumption 4.9 be satisfied for vertex i. Then Ci ⊇ CΠ
i ⊇ Ei and a necessary

condition for the rank condition in part (ii) of proposition 9.1 is that for every

Ẽi ∈ {Ẽi : Ẽi ⊆ E c
i , |Ẽi| = min[si, |E c

i |]} ∩ CΠ
i (9.21)

there are |Ei ∪ Ẽi| vertex-independent paths in Gyx from the covariates of V\{Ei ∪ Ẽi ∪ i} to the
outcomes of Ei ∪ Ẽi.
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Notes: The true parameters are in figure 3. The STIV estimator is applied with c = 0.99/r. Percentiles are taken over 1000 simulations. Vertices are reordered to concentrate the mass around the 45 degree line.

Figure 8: Percentiles of point estimates and estimation errors of Ψ for T = 500
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Notes: The true parameters are in figure 3. The STIV estimator is applied with c = 0.99/r. Percentiles are taken over 1000 simulations. Vertices are reordered to concentrate the mass around the 45 degree line.

Figure 9: Percentiles of point estimates and estimation errors of Ψ for T = 200
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Notes: The true parameters are in figure 3. The STIV estimator is applied with c = 0.99/r. Percentiles are taken over 1000 simulations. Vertices are reordered to concentrate the mass around the 45 degree line.

Figure 10: Percentiles of point estimates and estimation errors of Ψ for T = 100
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Notes: The true parameters are in figure 3. The STIV estimator is applied with c = 0.99/r. Percentiles are taken over 1000 simulations. Vertices are reordered to concentrate the mass around the 45 degree line.

Figure 11: Percentiles of point estimates and estimation errors of Ψ for T = 50
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Notes: The true parameters are in figure 3. The STIV estimator is applied with c = 0.99/r. Percentiles are taken over 1000 simulations. Vertices are reordered to concentrate the mass around the 45 degree line.

Figure 12: Percentiles of point estimates and estimation errors of Γ for T = 500
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Notes: The true parameters are in figure 3. The STIV estimator is applied with c = 0.99/r. Percentiles are taken over 1000 simulations. Vertices are reordered to concentrate the mass around the 45 degree line.

Figure 13: Percentiles of point estimates and estimation errors of Γ for T = 200
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Notes: The true parameters are in figure 3. The STIV estimator is applied with c = 0.99/r. Percentiles are taken over 1000 simulations. Vertices are reordered to concentrate the mass around the 45 degree line.

Figure 14: Percentiles of point estimates and estimation errors of Γ for T = 100
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Notes: The true parameters are in figure 3. The STIV estimator is applied with c = 0.99/r. Percentiles are taken over 1000 simulations. Vertices are reordered to concentrate the mass around the 45 degree line.

Figure 15: Percentiles of point estimates and estimation errors of Γ for T = 50

43


	Introduction
	Related Literature

	Notation
	Model
	Identification
	Sparsity Restrictions
	Exclusion Restrictions
	Unobserved Heterogeneity

	Estimation, Model Selection & Inference
	Simulations
	Results for a Fixed Network
	Results for Random Networks

	R&D Spillovers & Product Market Rivalry
	Model
	Instrumental Variables
	Data
	Results
	Welfare

	Conclusion
	Appendix
	Proofs
	Identification under sparsity for general K


